Tracking the vortex motion by using Brownian fluid particles

被引:3
|
作者
Qian, Zhongmin [1 ,3 ]
Qiu, Youchun [2 ]
Zhang, Yihuang [1 ,3 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Univ Toulouse, Inst Math Toulouse, MR 5219, CNRS,UPS, F-31062 Toulouse 9, France
[3] Oxford Suzhou Ctr Adv Res, Bldg A,388 Ruo Shui Rd,Suzhou Ind Pk, Jiandsu 215123, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
CONVERGENCE; SIMULATION; DIFFUSION; FLOW; TURBULENCE; EQUATION;
D O I
10.1063/5.0065073
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we propose a simple yet powerful vortex method to numerically approximate the dynamics of an incompressible flow. The idea is to sample the distribution of the initial vortices of the fluid flow in question and then follow vortex dynamics along Taylor's Brownian fluid particles. The weak convergences of this approximation scheme are obtained for both two-dimensional (2D) and three-dimensional (3D) fluid flows, though only for small time in 3D case. Based on our method, the simulation results are quite attracting.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] THE BROWNIAN-MOTION OF CHANNELED PARTICLES
    KOSHCHEYEV, VP
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1985, 28 (10): : 108 - 109
  • [22] Stationary motion of active Brownian particles
    Deng, ML
    Zhu, WQ
    [J]. PHYSICAL REVIEW E, 2004, 69 (04): : 9 - 1
  • [23] BROWNIAN-MOTION OF QUANTUM PARTICLES
    MELNIKOV, VI
    MESHKOV, SV
    [J]. JETP LETTERS, 1983, 38 (03) : 130 - 133
  • [24] Motion by stopping: Rectifying Brownian motion of nonspherical particles
    Sporer, Susan
    Goll, Christian
    Mecke, Klaus
    [J]. PHYSICAL REVIEW E, 2008, 78 (01):
  • [25] BROWNIAN MOTION OF CHARGED-PARTICLES IN ROTATING FLUID EMBEDDED IN MAGNETIC-FIELD
    KARMESHU, N
    NATH, R
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1973, 35 (04) : 967 - 972
  • [26] Optimizing parallel particle tracking in Brownian motion using machine learning
    Nikolic, Srdan
    Stevanovic, Nenad
    Ivanovic, Milos
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2020, 34 (05): : 532 - 546
  • [27] BROWNIAN-MOTION IN A FLOWING FLUID
    RAMSHAW, JD
    [J]. PHYSICS OF FLUIDS, 1979, 22 (09) : 1595 - 1601
  • [28] Theory of Brownian Motion in a Jeffreys Fluid
    Raikher, Yu. L.
    Rusakov, V. V.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2010, 111 (05) : 883 - 889
  • [29] Theory of Brownian motion in a Jeffreys fluid
    Yu. L. Raikher
    V. V. Rusakov
    [J]. Journal of Experimental and Theoretical Physics, 2010, 111 : 883 - 889
  • [30] VORTEX MOTION IN A VISCOUS FLUID
    LONG, RR
    [J]. JOURNAL OF METEOROLOGY, 1958, 15 (01): : 108 - 112