共 50 条
ON SPECIALITY OF BINARY-LIE ALGEBRAS
被引:5
|作者:
Arenas, Manuel
[1
]
Shestakov, Ivan
[2
]
机构:
[1] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
基金:
巴西圣保罗研究基金会;
关键词:
Assocyclic algebra;
binary-Lie algebra;
speciality problem;
super-algebra;
(-1,1)-algebra;
SUPERALGEBRAS;
D O I:
10.1142/S0219498811004550
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In the present work, binary-Lie, assocyclic, and binary (-1,1) algebras are studied. We prove that, for every assocyclic algebra A, the algebra A(-) is binary-Lie. We find a simple non-Malcev binary-Lie superalgebra T that cannot be embedded in A(-s) for an assocyclic superalgebra A. We use the Grassmann envelope of T to prove the similar result for algebras. This solve negatively a problem by Filippov (see [1, Problem 2.108]). Finally, we prove that the superalgebra T is isomorphic to the commutator superalgebra A(-s) for a simple binary (-1,1) superalgebra A.
引用
收藏
页码:257 / 268
页数:12
相关论文