ON SPECIALITY OF BINARY-LIE ALGEBRAS

被引:5
|
作者
Arenas, Manuel [1 ]
Shestakov, Ivan [2 ]
机构
[1] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Assocyclic algebra; binary-Lie algebra; speciality problem; super-algebra; (-1,1)-algebra; SUPERALGEBRAS;
D O I
10.1142/S0219498811004550
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work, binary-Lie, assocyclic, and binary (-1,1) algebras are studied. We prove that, for every assocyclic algebra A, the algebra A(-) is binary-Lie. We find a simple non-Malcev binary-Lie superalgebra T that cannot be embedded in A(-s) for an assocyclic superalgebra A. We use the Grassmann envelope of T to prove the similar result for algebras. This solve negatively a problem by Filippov (see [1, Problem 2.108]). Finally, we prove that the superalgebra T is isomorphic to the commutator superalgebra A(-s) for a simple binary (-1,1) superalgebra A.
引用
收藏
页码:257 / 268
页数:12
相关论文
共 50 条