Energy minibands degeneration induced by magnetic field effects in graphene superlattices

被引:3
|
作者
Reyes-Villagrana, R. A. [1 ]
Carrera-Escobedo, V. H. [1 ]
Suarez-Lopez, J. R. [1 ]
Madrigal-Melchor, J. [1 ]
Rodriguez-Vargas, I. [1 ]
机构
[1] Univ Autonoma Zacatecas, Unidad Acad Fis, Calzada Solidaridad Esquina Paseo La Bufa S-N, Zacatecas 98060, Zac, Mexico
关键词
Graphene superlattices; Energy minibands; Magnetic field effects; DIRAC FERMIONS; TRANSMISSION;
D O I
10.1016/j.spmi.2017.10.014
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Energy minibands are a basic feature of practically any superlattice. In this regard graphene superlattices are not the exception and recently miniband transport has been reported through magneto-transport measurements. In this work, we compute the energy mini band and transport characteristics for graphene superlattices in which the energy barriers are generated by magnetic and electric fields. The transfer matrix approach and the Landauer-Buttiker formalism have been implemented to calculate the energy minibands and the linear-regime conductance. We find that energy minibands are very sensitive to the magnetic field and become degenerate by rising it. We were also able to correlate the evolution of the energy minibands as a function of the magnetic field with the transport characteristics, finding that miniband transport can be destroyed by magnetic field effects. Here, it is important to remark that although magnetic field effects have been a key element to unveil miniband transport, they can also destroy it. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:561 / 573
页数:13
相关论文
共 50 条
  • [21] Magnetic-field-induced miniband conduction in semiconductor superlattices
    Fowler, Daivid
    Hardwick, David P. A.
    Patane, Amalia
    Greenaway, Mark T.
    Balanov, Alexander G.
    Fromhold, Timothy M.
    Eaves, Laurence
    Henini, Mohamed
    Kozlova, Nadezda
    Freudenberger, Jens
    Mori, Nobuya
    PHYSICAL REVIEW B, 2007, 76 (24)
  • [22] Magnetic field induced charge instabilities in weakly coupled superlattices
    Aguado, R
    Platero, G
    PHYSICA B-CONDENSED MATTER, 1998, 256 : 233 - 238
  • [23] Magnetic field induced rearrangement of the electric field domains in weakly coupled superlattices
    Feu, W. H. M.
    Elias, D. C.
    Cury, L. A.
    Guimaraes, P. S. S.
    Vieira, G. S.
    Pires, M. P.
    Landi, S. M.
    Souza, P. L.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 487 - +
  • [24] Self-similar transmission patterns induced by magnetic field effects in graphene
    Rodriguez-Gonzalez, R.
    Rodriguez-Vargas, I.
    Diaz-Guerrero, D. S.
    Gaggero-Sager, L. M.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 101 : 22 - 28
  • [25] Spin transport in magnetic graphene superlattices
    Z. P. Niu
    F. X. Li
    B. G. Wang
    L. Sheng
    D. Y. Xing
    The European Physical Journal B, 2008, 66 : 245 - 250
  • [26] Spin transport in magnetic graphene superlattices
    Niu, Z. P.
    Li, F. X.
    Wang, B. G.
    Sheng, L.
    Xing, D. Y.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 66 (02): : 245 - 250
  • [27] Effective Magnetic Fields in Graphene Superlattices
    Sun, Jianmin
    Fertig, H. A.
    Brey, L.
    PHYSICAL REVIEW LETTERS, 2010, 105 (15)
  • [28] Electric and magnetic superlattices in trilayer graphene
    Uddin, Salah
    Chan, K. S.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 75 : 56 - 65
  • [29] Magnetic field effects on the optical properties of superlattices in the Voigt configuration
    García-Serrano, R
    Martínez, G
    Hernández, PH
    Cocoletzi, GH
    SUPERLATTICES AND MICROSTRUCTURES, 2004, 35 (1-2) : 137 - 146
  • [30] Proposal for a magnetic field induced graphene dot
    Maksym, P. A.
    Roy, M.
    Craciun, M. F.
    Russo, S.
    Yamamoto, M.
    Tarucha, S.
    Aoki, H.
    QUANTUM DOTS 2010, 2010, 245