Multi-objective optimisation with stochastic algorithms and fuzzy definition of objective function

被引:8
|
作者
Chiampi, M
Fuerntratt, G
Magele, C
Ragusa, C
Repetto, M
机构
[1] Politecn Torino, Dipartimento Ingn Elettr Ind, Turin, Italy
[2] Graz Tech Univ, IGTE, A-8010 Graz, Austria
关键词
D O I
10.3233/JAEM-1998-097
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The use of a decision making scheme based on fuzzy logic applied to the design of electromagnetic devices is presented. In the Multi-Objective Optimisation, the different scalar objectives are merged together firstly by means of a fuzzyfication process and then by the application of a fuzzy logical operator. This scheme can be easily coupled to any search optimisation (zeroth order algorithm) since it does not require differentiation of the scalar functions. Two different implementations of the procedure, coupled to Simulated Annealing and to Genetic Algorithm stochastic search are presented. The two procedures are tested versus a two solenoids SMES (Superconducting Magnetic Energy Storage) Multi-Objective Optimisation problem.
引用
收藏
页码:381 / 389
页数:9
相关论文
共 50 条
  • [31] Multi-objective Cultural Algorithms
    Best, Christopher
    Che, Xiangdong
    Reynolds, Robert G.
    Liu, Dapeng
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [32] Multi-Objective Cultural Algorithms
    Reynolds, Robert
    Liu, Dapeng
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1233 - 1241
  • [33] Hybrid genetic algorithms for multi-objective optimisation of water distribution networks
    Keedwell, E
    Khu, ST
    GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS, 2004, 3103 : 1042 - 1053
  • [34] Multi-Objective Optimisation of Cortical Spiking Neural Networks With Genetic Algorithms
    Fitzgerald, James
    Wong-Lin, KongFatt
    2021 32ND IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC 2021), 2021,
  • [35] A review of multi-objective optimisation and decision making using evolutionary algorithms
    Ojha, Muneendra
    Singh, Krishna Pratap
    Chakraborty, Pavan
    Verma, Shekhar
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2019, 14 (02) : 69 - 84
  • [36] Multi-objective design optimisation of rolling bearings using genetic algorithms
    Gupta, Shantanu
    Tiwari, Rajiv
    Nair, Shivashankar B.
    MECHANISM AND MACHINE THEORY, 2007, 42 (10) : 1418 - 1443
  • [37] Evaluating Robustness of Template Matching Algorithms as a Multi-objective Optimisation Problem
    Bernal, Jose
    Trujillo, Maria
    Cabezas, Ivan
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 30 - 37
  • [38] Multi-objective evolutionary algorithms for fuzzy classification in survival prediction
    Jimenez, Fernando
    Sanchez, Gracia
    Juarez, Jose M.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2014, 60 (03) : 197 - 219
  • [39] Fuzzy optimization with multi-objective evolutionary algorithms: a case study
    Sanchez, G.
    Jimenez, F.
    Vasant, P.
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN MULTI-CRITERIA DECISION MAKING, 2007, : 58 - +
  • [40] Nonlinear optimization with fuzzy constraints by multi-objective evolutionary algorithms
    Jiménez, F
    Sánchez, G
    Cadenas, JM
    Gómez-Skarmeta, AF
    Verdegay, JL
    Computational Intelligence, Theory and Applications, 2005, : 713 - 722