Active vibration control of a nonlinear three-dimensional Euler-Bernoulli beam

被引:23
|
作者
He, Wei [1 ]
Yang, Chuan [2 ,3 ]
Zhu, Juxing [4 ]
Liu, Jin-Kun [4 ]
He, Xiuyu [2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol China, Ctr Robot, Chengdu, Sichuan, Peoples R China
[4] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Euler-Bernoulli beam; flexible structures; vibration control; boundary control; adaptive control; OUTPUT-FEEDBACK STABILIZATION; BOUNDARY CONTROL; ADAPTIVE-CONTROL; LEARNING CONTROL; SYSTEMS; DISTURBANCE; CONSTRAINT; DYNAMICS; EQUATION; TENSION;
D O I
10.1177/1077546315627722
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, boundary control is designed to suppress the vibration of a nonlinear three-dimensional Euler-Bernoulli beam. Considering the coupling effect between the axial deformation and the transverse displacement, the dynamics of the beam are modeled as a distributed parameter system described by three partial differential equations (PDEs) and 12 ordinary differential equations (ODEs). Firstly, model-based boundary control is designed based on a mathematical model of the system. Subsequently, adaptive control is proposed when there are parameter uncertainties in the model. The uniform boundedness and uniform ultimate boundedness are proved under the proposed control laws. Finally, numerical simulations illustrate the effectiveness of the results.
引用
下载
收藏
页码:3196 / 3215
页数:20
相关论文
共 50 条
  • [31] AN EULER-BERNOULLI BEAM WITH NONLINEAR DAMPING AND A NONLINEAR SPRING AT THE TIP
    Miletic, Maja
    Stuerzer, Dominik
    Arnold, Anton
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (09): : 3029 - 3055
  • [32] LYAPUNOV FUNCTIONS AND THE CONTROL OF THE EULER-BERNOULLI BEAM
    SHIFMAN, JJ
    INTERNATIONAL JOURNAL OF CONTROL, 1993, 57 (04) : 971 - 990
  • [33] DYNAMIC BOUNDARY CONTROL OF A EULER-BERNOULLI BEAM
    MORGUL, O
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (05) : 639 - 642
  • [34] Sliding mode vibration control of Euler-Bernoulli beam with unknown bounded disturbances
    Ma, Yifei
    Lou, Xuyang
    Wu, Wei
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 96
  • [35] Sliding mode vibration control of an Euler-Bernoulli beam with unknown external disturbances
    Wang, Zhan
    Wu, Wei
    Goerges, Daniel
    Lou, Xuyang
    NONLINEAR DYNAMICS, 2022, 110 (02) : 1393 - 1404
  • [36] Vibration control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance
    Ge, Shuzhi Sam
    Zhang, Shuang
    He, Wei
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (05) : 947 - 960
  • [37] Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations
    Weeger, Oliver
    Wever, Utz
    Simeon, Bernd
    NONLINEAR DYNAMICS, 2013, 72 (04) : 813 - 835
  • [38] Model Order Reduction of Nonlinear Euler-Bernoulli Beam
    Ilbeigi, Shahab
    Chelidze, David
    NONLINEAR DYNAMICS, VOL 1, 2017, : 377 - 385
  • [39] PERIODIC SOLUTIONS TO NONLINEAR EULER-BERNOULLI BEAM EQUATIONS
    Chen, Bochao
    Gao, Yixian
    Li, Yong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (07) : 2005 - 2034
  • [40] On generalized nonlinear Euler-Bernoulli Beam type equations
    Khaldi, Rabah
    Guezane-Lakoud, Assia
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2018, 10 (01) : 90 - 100