Fitting a Pareto-Normal-Pareto distribution to the residuals of financial data

被引:2
|
作者
Ellis, S [1 ]
Steyn, F [1 ]
Venter, H [1 ]
机构
[1] Potchefstroom Univ Christian Higher Educ, ZA-2050 Potchefstroom, South Africa
关键词
GARCH models; Extreme Value Theory; Value-at-Risk; Expected Shortfall;
D O I
10.1007/BF03354611
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Pareto-Normal-Pareto (PNP) distribution assumes that, for log returns of financial series, the innovations are normally distributed between two threshold values with Pareto tails below and above the respective thresholds. These threshold values can be estimated by maximum likelihood estimation (MLE). Monte Carlo simulations of normal, as well as heavy tailed error distributions, are used to compare the methods using this distribution with other methods to calculate Value-at-Risk (VaR) and Expected Shortfall (ESf). It is also applied to South African stock exchange data.
引用
收藏
页码:477 / 491
页数:15
相关论文
共 50 条
  • [21] The Kumaraswamy Pareto distribution
    Marcelo Bourguignon
    Rodrigo B. Silva
    Luz M. Zea
    Gauss M. Cordeiro
    Journal of Statistical Theory and Applications, 2013, 12 (2): : 129 - 144
  • [22] On estimation for the Pareto distribution
    He, Hui
    Zhou, Na
    Zhang, Ruiming
    STATISTICAL METHODOLOGY, 2014, 21 : 49 - 58
  • [23] A product pareto distribution
    Nadarajah, Saralees
    Gupta, Arjun K.
    METRIKA, 2008, 68 (02) : 199 - 208
  • [24] A truncated pareto distribution
    Ali, M. Masoom
    Nadarajah, Saralees
    COMPUTER COMMUNICATIONS, 2006, 30 (01) : 1 - 4
  • [25] The Pareto optimality distribution
    Saralees Nadarajah
    Quality & Quantity, 2009, 43 : 993 - 998
  • [26] A MODEL FOR THE PARETO DISTRIBUTION
    WALTER, W
    APPLICABLE ANALYSIS, 1981, 11 (03) : 233 - 239
  • [27] An Extended Pareto Distribution
    Mead, M. E.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2014, 10 (03) : 313 - 329
  • [28] The Pareto Distribution of Incomes
    Rhodes, E. C.
    ECONOMICA-NEW SERIES, 1944, 11 (41): : 1 - 11
  • [29] The Kumaraswamy Pareto distribution
    Bourguignon, Marcelo
    Silva, Rodrigo B.
    Zea, Luz M.
    Cordeiro, Gauss M.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2013, 12 (02): : 129 - 144
  • [30] A multivariate pareto distribution
    Hanagal, DD
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (07) : 1471 - 1488