Spreading of liquid droplets on proton exchange membrane of a direct alcohol fuel cell

被引:18
|
作者
Keshav, Tirupati R. [1 ]
Basu, S. [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, New Delhi 110016, India
关键词
spreading; porous substrate; imbibition; proton exchange membrane; fuel cell;
D O I
10.1016/j.ces.2007.08.019
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Spreading of liquid droplets over solid surfaces is a fundamental process with a number of applications including electro-chemical reactions on catalyst surface in membrane electrode assembly of proton exchange membrane (PEM) fuel cell and direct alcohol fuel cell. The spreading process of droplet on the PEM porous substrate consists of two phenomena, e.g., spreading of droplet on PEM surface and imbibition of droplet into PENI porous substrate. The shrinkage of the droplet base occurs due to the suction of the liquid from the droplet into the PENI porous substrate. As a result of these two competing processes, the radius of the drop base goes through a maximum with time. The variation of droplet base and front diameter with time on the PENI porous substrate is monitored using microscope fitted with CCD camera and a PC. It is seen that the droplet base diameter goes through a maximum with time, whereas the front diameter increases continuously with time. Further, methanol droplet spreading and wetting front movement was faster than that for ethanol and deionized water. As the PEM porous substrate is wetted and imbibed well by the methanol compared to ethanol, it is expected that the cross over of methanol would be higher than that of ethanol in direct alcohol fuel cell. It should be noted that cross over of alcohol from anode side to cathode side through membrane is detrimental to the fuel cell operation. The experimental data on the variation of droplet base and wetting front diameter with time is predicted by the model available in the literature. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7515 / 7522
页数:8
相关论文
共 50 条
  • [41] Cold start of proton exchange membrane fuel cell
    Luo, Yueqi
    Jiao, Kui
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2018, 64 : 29 - 61
  • [42] Oxygen electrode for proton exchange membrane fuel cell
    Lu, L.H.
    Jin, L.H.
    Wang, J.T.
    Dianyuan Jishu/Chinese Journal of Power Sources, 2001, 25 (02):
  • [43] A flexible portable proton exchange membrane fuel cell
    Hsu, Fu-Kuang
    Lee, Ming-San
    Lin, Chi-Chang
    Lin, Yu-Kuo
    Hsu, Wei-Ting
    JOURNAL OF POWER SOURCES, 2012, 219 : 180 - 187
  • [44] Accelerated conditioning for a proton exchange membrane fuel cell
    Yuan, Xiao-Zi
    Sun, Jian Colin
    Wang, Haijiang
    Li, Hui
    JOURNAL OF POWER SOURCES, 2012, 205 : 340 - 344
  • [45] Thermodynamic analysis of a Proton Exchange Membrane fuel cell
    Ozgur, Tayfun
    Yakaryilmaz, Ali Cem
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (38) : 18007 - 18013
  • [46] A REVIEW ON MODELING OF PROTON EXCHANGE MEMBRANE FUEL CELL
    Hamdollahi, Sahra
    Jun, Luo
    CHEMICAL INDUSTRY & CHEMICAL ENGINEERING QUARTERLY, 2023, 29 (01) : 61 - 74
  • [47] Thermodynamic modelling of a proton exchange membrane fuel cell
    Ay, M.
    Midilli, A.
    INTERNATIONAL JOURNAL OF EXERGY, 2006, 3 (01) : 16 - 44
  • [48] Stress Analysis of Proton Exchange Membrane Fuel Cell
    Miftah, Kurniawan
    Ramli, Wan Wan Daud
    Edy, Herianto Majlan
    ADVANCES IN MECHANICAL ENGINEERING, PTS 1-3, 2011, 52-54 : 875 - 880
  • [49] Proton Exchange Membrane Fuel Cell with Humidifying Zone
    Lue Weizhong
    Liu Zhixiang
    Wang Cheng
    Mao Zongqiang
    Zhang Milin
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2010, 18 (05) : 856 - 862
  • [50] Selection of proton exchange membrane fuel cell for transportation
    Ogungbemi, Emmanuel
    Wilberforce, Tabbi
    Ijaodola, Oluwatosin
    Thompson, James
    Olabi, A. G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (59) : 30625 - 30640