Martin boundary at infinity for the heat equation

被引:0
|
作者
Nishio, M [1 ]
机构
[1] Osaka City Univ, Dept Math, Osaka 558, Japan
来源
SEVENTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, PROCEEDINGS | 1997年
关键词
heat equation; uniqueness of positive solutions; Martin boundary;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate the notion of the Martin boundary at infinity and apply it some concrete domeins.
引用
收藏
页码:261 / 267
页数:7
相关论文
共 50 条
  • [11] Regularity of nonvanishing - at infinity or at the boundary - solutions of the defocusing nonlinear Shrodinger equation
    Gialelis, Nikolaos
    Karachalios, Nikos, I
    Stratis, Ioannis G.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (02) : 233 - 281
  • [12] An exact absorbing boundary condition for the Schrodinger equation with sinusoidal potentials at infinity
    Zheng, Chunxiong
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2008, 3 (03) : 641 - 658
  • [13] A FREE BOUNDARY PROBLEM FOR THE HEAT EQUATION
    WENTZELL, TD
    DOKLADY AKADEMII NAUK SSSR, 1960, 131 (05): : 1000 - 1003
  • [14] On a nonlinear boundary problem for a heat equation
    Egorov, YV
    Kondratiev, VA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (01): : 55 - 58
  • [15] On a Nonlinear Heat Equation with Degeneracy on the Boundary
    Zhan Huashui
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2019, 32 (01): : 20 - 32
  • [16] Boundary regularity for the fractional heat equation
    Fernandez-Real, Xavier
    Ros-Oton, Xavier
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (01) : 49 - 64
  • [17] Boundary regularity for the fractional heat equation
    Xavier Fernández-Real
    Xavier Ros-Oton
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 49 - 64
  • [18] A boundary value problem for the heat equation
    Dressel, FG
    AMERICAN JOURNAL OF MATHEMATICS, 1933, 55 : 641 - 653
  • [19] APPROXIMATE BOUNDARY CONTROLLABILITY FOR HEAT EQUATION
    MACCAMY, RC
    MIZEL, VJ
    SEIDMAN, TI
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 23 (03) : 699 - &
  • [20] Emergence of boundary conditions in the heat equation
    Chung, Jaywan
    Kang, Seungmin
    Kim, Ho-Youn
    Kim, Yong-Jung
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (07)