Enhancing Query Expansion Method Using Word Embedding

被引:1
|
作者
Yusuf, Nuhu [1 ,2 ]
Yunus, Mohd Amin Mohd [1 ]
Wahid, Norfaradilla [1 ]
Wahid, Noorhaniza [1 ]
Nawi, Nazri Mohd [1 ]
Samsudin, Noor Azah [1 ]
机构
[1] Univ Tun Hussein Onn Malaysia, Fac Comp Sci & Informat Technol, Parit Raja, Malaysia
[2] Abubakar Tafawa Balewa Univ, Mgt & Informat Technol Dept, Bauchi, Nigeria
关键词
query expansion; word embedding; continuous bag of words; skip-gram; glove model;
D O I
10.1109/icsengt.2019.8906317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, many query expansion methods have been proposed to improve the results of search applications. However, many of these search applications still lack better results and many attributed due to query expansion issues. This paper enhanced the query expansion method based on unigram model with Okapi BM25and word embedding using Glove. A Glove model captured the semantic similarity by mapping various words based on unigram with Okapi BM25 results. The results indicate that our proposed method based on Glove model word embedding can significantly improve query expansion methods using Arberry dataset.
引用
收藏
页码:232 / 235
页数:4
相关论文
共 50 条
  • [31] Hybrid query expansion using lexical resources and word embeddings for sentence retrieval in question answering
    Esposito, Massimo
    Damiano, Ernanuele
    Minutolo, Aniello
    De Pietro, Giuseppe
    Fujita, Hamido
    INFORMATION SCIENCES, 2020, 514 : 88 - 105
  • [32] Refining Query Expansion Terms using Query Context
    Crimp, Reuben
    Trotman, Andrew
    ADCS'18: PROCEEDINGS OF THE 23RD AUSTRALASIAN DOCUMENT COMPUTING SYMPOSIUM, 2018,
  • [33] Probabilistic Query Expansion Method Using Recommended Past User Queries
    El Ghali, Btihal
    El Qadi, Abderrahim
    Ouadou, Mohamed
    Aboutajdine, Driss
    2012 SECOND INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING TECHNOLOGY (INTECH), 2012, : 406 - 411
  • [34] Enhancing Domain Word Embedding via Latent Semantic Imputation
    Yao, Shibo
    Yu, Dantong
    Xiao, Keli
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 557 - 565
  • [35] LSDE: Levenshtein Space Deep Embedding for Query-by-string Word Spotting
    Gomez, Lluis
    Rusinol, Marcal
    Karatzas, Dimosthenis
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 499 - 504
  • [36] Acronym Disambiguation Using Word Embedding
    Li, Chao
    Ji, Lei
    Yan, Jun
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 4178 - 4179
  • [37] Query Expansion using Information Scent
    Chawla, Suruchi
    Bedi, Punam
    INTERNATIONAL SYMPOSIUM OF INFORMATION TECHNOLOGY 2008, VOLS 1-4, PROCEEDINGS: COGNITIVE INFORMATICS: BRIDGING NATURAL AND ARTIFICIAL KNOWLEDGE, 2008, : 1988 - 1995
  • [38] Improving Query Expansion Using WordNet
    Pal, Dipasree
    Mitra, Mandar
    Datta, Kalyankumar
    JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 2014, 65 (12) : 2469 - 2478
  • [39] Query-based multi-documents summarization using linguistic knowledge and content word expansion
    Abdi, Asad
    Idris, Norisma
    Alguliyev, Rasim M.
    Aliguliyev, Ramiz M.
    SOFT COMPUTING, 2017, 21 (07) : 1785 - 1801
  • [40] Labelling Topics in Weibo Using Word Embedding and Graph-based Method
    Jin, Zhipeng
    Li, Qiudan
    Wang, Can
    Zeng, Daniel D.
    Wang, Lei
    2016 INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS ENGINEERING (ICISE), 2016, : 34 - 37