Bounds of operator functions and Furuta inequalities

被引:1
|
作者
Lin, CS [1 ]
机构
[1] Bishops Univ, Dept Math, Lennoxville, PQ J1M 1Z7, Canada
关键词
D O I
10.2977/prims/1195142870
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper me shall find bounds of operator functions of the Furuta types, and bounds of the monotone decreasing function F-p,F-t(A, B, r, s) of operators in particular. Consequently, we obtain bounds of Furuta inequalities.
引用
收藏
页码:483 / 490
页数:8
相关论文
共 50 条
  • [11] Generalization of the Kantorovich type operator inequalities via grand Furuta inequality
    Micic, Jadranka
    Pecaric, Josip
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (03): : 495 - 510
  • [12] CLASSIFIED CONSTRUCTION OF GENERALIZED FURUTA TYPE OPERATOR FUNCTIONS, II
    Yuan, Jiangtao
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (04): : 775 - 784
  • [13] A complement to monotonicity of generalized Furuta-type operator functions
    Ito, Masatoshi
    Kamei, Eizaburo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 544 - 546
  • [14] Furuta Type Inequalities Dealing with Pedersen-Takesaki Type Operator Equations
    Shi, Jian
    Gao, Zongsheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (03) : 691 - 697
  • [15] Submultiplicative functions and operator inequalities
    Koenig, Hermann
    Milman, Vitali
    STUDIA MATHEMATICA, 2014, 223 (03) : 217 - 231
  • [16] Inequalities of Reid type and Furuta
    Lin, CS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (03) : 855 - 859
  • [17] BOUNDS AND INEQUALITIES OF THE MODIFIED LOMMEL FUNCTIONS
    Mondal, Saiful R.
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 573 - 583
  • [18] Differentiation of operator functions and perturbation bounds
    Bhatia, R
    Singh, D
    Sinha, KB
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (03) : 603 - 611
  • [19] Some operator inequalities involving operator monotone functions
    Jafarmanesh, Hosna
    Khosravi, Maryam
    Sheikhhosseini, Alemeh
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 166
  • [20] Perturbation bounds for certain operator functions
    Aujla, JS
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (04): : 609 - 617