Superabsorbing metamaterial wormhole: Physical modeling and wave interaction effects

被引:9
|
作者
Maslovski, Stanislav I. [1 ]
Ferreira, Hugo R. L. [1 ]
Medvedev, Iurii O. [1 ]
Bras, Nuno G. B. [2 ,3 ]
机构
[1] DEEC FCTUC Polo II Pinhal Marrocos, Inst Telecomunicacoes, P-3030290 Coimbra, Portugal
[2] Inst Super Tecn, Inst Telecomunicacoes, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
[3] Univ Autonoma Lisboa, Dept Ciencias & Tecnol, Rua Santa Marta 56 Palacio Condes Redondo, P-1169023 Lisbon, Portugal
关键词
SCATTERING;
D O I
10.1103/PhysRevB.98.245143
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conjugate-impedance matched superabsorbers are metamaterial bodies whose effective absorption cross section greatly exceeds their physical dimension. Such objects are able to receive radiation when it is not directly incident on their surface. Here, we develop methods of physical modeling of such structures and investigate interactions of the superabsorbers with passing electromagnetic radiation. The particular superabsorbing structure under study is a wormhole composed of meshes of loaded transmission lines. A theory of electromagnetic wave propagation and absorption in such metamaterial structures is developed. At the frequency of operation, the structure exhibits greatly enhanced absorption as compared to the black-body-type absorber of the same size. Peculiar wave absorption effects such as trapping of nearby passing beams of electromagnetic radiation are demonstrated by numerical simulations. Possible modifications of the wormhole structure under the goal of optimizing absorption while minimizing complexity of the involved metamaterials are discussed. Conjugate-impedance matched superabsorbers may find applications as efficient harvesters of electromagnetic radiation, antennas, and sensors.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Physical and numerical modeling of seismic wave propagation
    Tang, G
    Clemence, D
    Jackson, C
    Lin, Q
    Burbach, V
    Mathematical Studies in Nonlinear Wave Propagation, 2005, 379 : 191 - 211
  • [22] Dispersion Diagram Modeling for a Metamaterial-Like Slow-Wave Structure
    Yurt, Sabahattin Cihad
    Prasad, Santa
    Ilyenko, Kostyantyn
    Fuks, Mikhail
    Schamiloglu, Edi
    IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE, 2014, : 495 - 496
  • [23] Physical modeling of overburden effects
    Luo, Mu
    Takanashi, Mamoru
    Nakayama, Kazuo
    Ezaka, Teruya
    GEOPHYSICS, 2007, 72 (04) : T37 - T45
  • [24] Numerical modeling of wave interaction with porous structures
    Liu, PLF
    Lin, PZ
    Chang, KA
    Sakakiyama, T
    JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE, 1999, 125 (06): : 322 - 330
  • [25] Modeling the interaction of an internal solitary wave with a sill
    Qun Li
    Zhenhua Xu
    Baoshu Yin
    Tao Bai
    Kun Liu
    Yang Wang
    Acta Oceanologica Sinica, 2015, 34 : 32 - 37
  • [26] Modeling the interaction of an internal solitary wave with a sill
    LI Qun
    XU Zhenhua
    YIN Baoshu
    BAI Tao
    LIU Kun
    WANG Yang
    Acta Oceanologica Sinica, 2015, 34 (11) : 32 - 37
  • [27] Modeling the interaction of an internal solitary wave with a sill
    Li Qun
    Xu Zhenhua
    Yin Baoshu
    Bai Tao
    Liu Kun
    Wang Yang
    ACTA OCEANOLOGICA SINICA, 2015, 34 (11) : 32 - 37
  • [28] Effects of solitary wave breaking on the hydrodynamic performance of a submerged horizontal plate: A physical modeling study
    Lee, Changmin
    Kim, Taeyoon
    Hwang, Taegeon
    Lee, Woo-Dong
    OCEAN ENGINEERING, 2024, 300
  • [29] Design of Thin Wire Metamaterial-Based Interaction Structure for Backward Wave Generation
    Narasimhan, Purushothaman
    Jain, Sahil
    Gurjar, Nikita
    Kumar, Niraj
    Ghosh, Sanjay Kumar
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (03) : 1227 - 1233
  • [30] Physical Modeling of Traveling-Wave Heterojunction Phototransistors
    Rangel-Sharp, G.
    Miles, R. E.
    Iezekiel, S.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26 (13-16) : 1943 - 1949