Phase transitions in social networks

被引:25
|
作者
Fronczak, P.
Fronczak, A.
Holyst, J. A.
机构
[1] Warsaw Univ Technol, Fac Phys, PL-00662 Warsaw, Poland
[2] Warsaw Univ Technol, Ctr Excellence Complex Syst Res, PL-00662 Warsaw, Poland
来源
EUROPEAN PHYSICAL JOURNAL B | 2007年 / 59卷 / 01期
关键词
D O I
10.1140/epjb/e2007-00270-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study a model of network with clustering and desired node degree. The original purpose of the model was to describe optimal structures of scientific collaboration in the European Union. The model belongs to the family of exponential random graphs. We show by numerical simulations and analytical considerations how a very simple Hamiltonian can lead to surprisingly complicated and eventful phase diagram.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 50 条
  • [21] Explosive transitions to synchronization in networks of phase oscillators
    Leyva, I.
    Navas, A.
    Sendina-Nadal, I.
    Almendral, J. A.
    Buldu, J. M.
    Zanin, M.
    Papo, D.
    Boccaletti, S.
    SCIENTIFIC REPORTS, 2013, 3
  • [22] Phase transitions in the Potts model on complex networks
    Krasnytska, M.
    Berche, B.
    Holovatch, Yu
    CONDENSED MATTER PHYSICS, 2013, 16 (02)
  • [23] Vehicle flow and phase transitions in traffic networks
    Jain, S
    Traffic and Granular Flow '03, 2005, : 337 - 339
  • [24] Explosive transitions to synchronization in networks of phase oscillators
    I. Leyva
    A. Navas
    I. Sendiña-Nadal
    J. A. Almendral
    J. M. Buldú
    M. Zanin
    D. Papo
    S. Boccaletti
    Scientific Reports, 3
  • [25] Discriminative Cooperative Networks for Detecting Phase Transitions
    Liu, Ye-Hua
    van Nieuwenburg, Evert P. L.
    PHYSICAL REVIEW LETTERS, 2018, 120 (17)
  • [26] Topological phase transitions in functional brain networks
    Santos, Fernando A. N.
    Raposo, Ernesto P.
    Coutinho-Filho, Mauricio D.
    Copelli, Mauro
    Stam, Cornelis J.
    Douw, Linda
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [27] Phase transitions in Ising models on directed networks
    Lipowski, Adam
    Ferreira, Antonio Luis
    Lipowska, Dorota
    Gontarek, Krzysztof
    PHYSICAL REVIEW E, 2015, 92 (05)
  • [28] Exotic phase transitions in disordered globular networks
    Gutman, L
    Shakhnovich, E
    JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (24): : 10968 - 10976
  • [29] Phase transitions and overlapping modules in complex networks
    Vicsek, Tamas
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 378 (01) : 20 - 32
  • [30] Phase transitions in Pareto optimal complex networks
    Seoane, Luis F.
    Sole, Ricard
    PHYSICAL REVIEW E, 2015, 92 (03)