Structure and activation mechanism of the BBSome membrane protein trafficking complex

被引:52
|
作者
Singh, Sandeep K. [1 ]
Gui, Miao [1 ]
Koh, Fujiet [1 ,3 ]
Yip, Matthew C. J. [2 ]
Brown, Alan [1 ]
机构
[1] Harvard Med Sch, Dept Biol Chem & Mol Pharmacol, Blavatnik Inst, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Cell Biol, Blavatnik Inst, Boston, MA 02115 USA
[3] MRC, Lab Mol Biol, Cambridge, England
来源
ELIFE | 2020年 / 9卷
关键词
BARDET-BIEDL-SYNDROME; INTRAFLAGELLAR TRANSPORT; COUPLED RECEPTORS; ADAPTER COMPLEX; TRANSITION ZONE; CILIA DEFECTS; MOUSE MODEL; A COMPLEX; FAMILY; IFT;
D O I
10.7554/eLife.53322
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bardet-Biedl syndrome (BBS) is a currently incurable ciliopathy caused by the failure to correctly establish or maintain cilia-dependent signaling pathways. Eight proteins associated with BBS assemble into the BBSome, a key regulator of the ciliary membrane proteome. We report the electron cryomicroscopy (cryo-EM) structures of the native bovine BBSome in inactive and active states at 3.1 and 3.5 angstrom resolution, respectively. In the active state, the BBSome is bound to an Arf-family GTPase (ARL6/BBS3) that recruits the BBSome to ciliary membranes. ARL6 recognizes a composite binding site formed by BBS1 and BBS7 that is occluded in the inactive state. Activation requires an unexpected swiveling of the beta-propeller domain of BBS1, the subunit most frequently implicated in substrate recognition, which widens a central cavity of the BBSome. Structural mapping of disease-causing mutations suggests that pathogenesis results from folding defects and the disruption of autoinhibition and activation.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Complex structure and activation mechanism of arginine kinase McsB by McsA
    Lu, Kai
    Luo, Bingnan
    Tao, Xuan
    Luo, Yongbo
    Ao, Mingjun
    Zheng, Bin
    Xu, Xiang
    Ma, Xiaoyan
    Niu, Jingling
    Li, Huinan
    Xie, Yanxuan
    Zhao, Zhennan
    Zheng, Peng
    Wang, Guanbo
    Gao, Song
    Wang, Chao
    Xia, Wei
    Su, Zhaoming
    Mao, Zong-Wan
    NATURE CHEMICAL BIOLOGY, 2025, 21 (03) : 402 - 411
  • [32] Membrane-protein interactions in cell signaling and membrane trafficking
    Cho, WH
    Stahelin, RV
    ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2005, 34 : 119 - 151
  • [33] Effects of a membrane trafficking protein on androgen response
    Mills, Ian G.
    Massie, Charles E.
    Gaughan, Luke
    Robson, Craig
    Ross, Theodora S.
    Neal, David E.
    CANCER RESEARCH, 2006, 66 (08)
  • [34] New insights into membrane trafficking and protein sorting
    Derby, Merran C.
    Gleeson, Paul A.
    INTERNATIONAL REVIEW OF CYTOLOGY - A SURVEY OF CELL BIOLOGY, VOL 261, 2007, 261 : 47 - +
  • [35] Membrane protein trafficking in Drosophila photoreceptor cells
    Schopf, Krystina
    Huber, Armin
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2017, 96 (05) : 391 - 401
  • [36] Membrane protein activation
    Borman, Stu
    CHEMICAL & ENGINEERING NEWS, 2007, 85 (14) : 11 - 11
  • [37] BBS9 as potential tissue-specific key protein in BBSome binding and ciliary trafficking in NCS patients
    Barba, M.
    Di Pietro, L.
    Bernardini, C.
    Massimi, L.
    Tamburrini, G.
    Della Longa, S.
    Arcovito, A.
    Parolini, O.
    Boyadjiev, S. A.
    Lattanzi, W.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 100 - 101
  • [38] Structure and activation mechanism of the hexameric plasma membrane H+-ATPase
    Peng Zhao
    Chaoran Zhao
    Dandan Chen
    Caihong Yun
    Huilin Li
    Lin Bai
    Nature Communications, 12
  • [39] Structure and activation mechanism of the hexameric plasma membrane H+-ATPase
    Zhao, Peng
    Zhao, Chaoran
    Chen, Dandan
    Yun, Caihong
    Li, Huilin
    Bai, Lin
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [40] Structure of an essential inner membrane protein-LPS complex
    Clairfeuille, Thomas
    Buchholz, Kerry
    Payandeh, Jian
    Rutherford, Steven
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E204 - E204