Nitrogen addition differently alters GHGs production and soil microbial community of tidal salt marsh soil depending on the types of halophyte

被引:9
|
作者
Kim, Jinhyun [1 ]
Chaudhary, Doongar R. [2 ]
Kang, Hojeong [1 ]
机构
[1] Yonsei Univ, Sch Civil & Environm Engn, Seoul 03722, South Korea
[2] Cent Salt & Marine Chem Res Inst, Biotechnol & Phycol Div, CSIR, Bhavnagar 364002, Gujarat, India
基金
新加坡国家研究基金会;
关键词
Tidal marsh; Nitrogen; GHGs; Microbial community; Halophyte; YELLOW-RIVER ESTUARY; ORGANIC-CARBON; PHRAGMITES-AUSTRALIS; FUNCTIONAL MARKERS; RESIDUE CHEMISTRY; METHANE EMISSIONS; REDUCTASE GENES; SUAEDA-SALSA; DECOMPOSITION; ECOSYSTEM;
D O I
10.1016/j.apsoil.2019.103440
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Temperate tidal salt marshes are an important carbon sink. They store 44.7 Tg C and only emit low amounts of greenhouse gases. Although recent studies have suggested that environmental changes such as eutrophication and plant invasion may alter their methane and nitrous oxide emissions, the exact consequences and dynamics are not yet fully understood. We hypothesize that the greenhouse gas emission responses from nitrogen addition differs depending on halophyte types. In this study, we conducted soil incubation experiments with different halophyte and nitrogen amendments. We found that nitrogen addition significantly enhanced methane emissions from bare tidal flats (45%) and Suaeda japonica marshes (3500%), which normally have low plant biomass nitrogen input. The main contributors to this change were the increased abundance of Gram-positive bacteria and decreased relative abundance of sulfate to methanogen reducers (dsrA/mcrA). These results suggest that the effects of nitrogen addition on methane emission stimulation may be substantial for specific types of tidal marshes. They further suggests that improper nitrogen input management and the consequent eutrophication may cause a dramatic rise in methane emissions.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Phosphate Addition and Plant Species Alters Microbial Community Structure in Acidic Upland Grassland Soil
    Rooney, Deirdre C.
    Clipson, Nicholas J. W.
    MICROBIAL ECOLOGY, 2009, 57 (01) : 4 - 13
  • [32] Elevated CO2 and nitrogen addition affect the microbial abundance but not the community structure in salt marsh ecosystem
    Lee, Seung-Hoon
    Megonigal, Patrick J.
    Langley, Adam J.
    Kang, Hojeong
    APPLIED SOIL ECOLOGY, 2017, 117 : 129 - 136
  • [33] Carbon Stocks in Vegetation and Soil and Their Relationship with Plant Community Traits in a Mediterranean Non-tidal Salt Marsh
    Carrasco-Barea, Lorena
    Verdaguer, Dolors
    Gispert, Maria
    Font, Joan
    Compte, Jordi
    Llorens, Laura
    ESTUARIES AND COASTS, 2023, 46 (02) : 376 - 387
  • [34] Carbon Stocks in Vegetation and Soil and Their Relationship with Plant Community Traits in a Mediterranean Non-tidal Salt Marsh
    Lorena Carrasco-Barea
    Dolors Verdaguer
    Maria Gispert
    Joan Font
    Jordi Compte
    Laura Llorens
    Estuaries and Coasts, 2023, 46 : 376 - 387
  • [35] Effects of Nitrogen Addition on Rhizosphere Soil Microbial Community and Yield of Wheat in Loess Plateau
    Fan, Y. Q.
    Liu, Q.
    Huo, R. X.
    Wang, Y. N.
    Guo, L. C.
    Yang, Z. P.
    Huang, T. M.
    Gao, Z. Q.
    Qiao, Y. J.
    EURASIAN SOIL SCIENCE, 2023, 56 (11) : 1739 - 1750
  • [36] Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China
    Li, Jian
    Li, Zhian
    Wang, Faming
    Zou, Bi
    Chen, Yao
    Zhao, Jie
    Mo, Qifeng
    Li, Yingwen
    Li, Xiaobo
    Xia, Hanping
    BIOLOGY AND FERTILITY OF SOILS, 2015, 51 (02) : 207 - 215
  • [37] Effects of Nitrogen Addition on Rhizosphere Soil Microbial Community and Yield of Wheat in Loess Plateau
    Y. Q. Fan
    Q. Liu
    R. X. Huo
    Y. N. Wang
    L. C. Guo
    Z. P. Yang
    T. M. Huang
    Z. Q. Gao
    Y. J. Qiao
    Eurasian Soil Science, 2023, 56 : 1739 - 1750
  • [38] Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China
    Jian Li
    Zhian Li
    Faming Wang
    Bi Zou
    Yao Chen
    Jie Zhao
    Qifeng Mo
    Yingwen Li
    Xiaobo Li
    Hanping Xia
    Biology and Fertility of Soils, 2015, 51 : 207 - 215
  • [39] Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil
    Widdig, Meike
    Heintz-Buschart, Anna
    Schleuss, Per-Marten
    Guhr, Alexander
    Borer, Elizabeth T.
    Seabloom, Eric W.
    Spohn, Marie
    SOIL BIOLOGY & BIOCHEMISTRY, 2020, 151
  • [40] Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil
    Chen, Yihui
    Li, Shuangshuang
    Liu, Na
    He, Huan
    Cao, Xiaoyu
    Lv, Cheng
    Zhang, Ke
    Dai, Jiulan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (18) : 23036 - 23047