TRUNCATION BOUNDS FOR APPROXIMATIONS OF INHOMOGENEOUS CONTINUOUS-TIME MARKOV CHAINS

被引:10
|
作者
Zeifman, A. I. [1 ,2 ,3 ]
Korotysheva, A. V. [1 ,3 ]
Korolev, V. Yu. [1 ]
Satin, Ya. A. [1 ,3 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
[2] Vologda State Univ, IPI FRC CSC RAS, ISEDT RAS, Moscow, Russia
[3] Vologda State University, IPI FRC CSC RAS, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
inhomogeneous continuous-time Markov processes; approximations; truncations; weak ergodicity; DEATH PROCESSES; PERTURBATION BOUNDS; NONHOMOGENEOUS BIRTH; DEPENDENT QUEUES; QUEUING-SYSTEMS; MASS EXODUS; CONVERGENCE; ARRIVALS; ERROR; EMPTY;
D O I
10.1137/S0040585X97T988320
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Weakly ergodic continuous-time countable Markov chains are studied. We obtain uniform in time bounds for approximations via truncations by analogous smaller chains under some natural assumptions.
引用
收藏
页码:513 / 520
页数:8
相关论文
共 50 条
  • [31] Lumpability for Uncertain Continuous-Time Markov Chains
    Cardelli, Luca
    Grosu, Radu
    Larsen, Kim G.
    Tribastone, Mirco
    Tschaikowski, Max
    Vandin, Andrea
    QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2021), 2021, 12846 : 391 - 409
  • [32] SIMILAR STATES IN CONTINUOUS-TIME MARKOV CHAINS
    Yap, V. B.
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (02) : 497 - 506
  • [33] Matrix Analysis for Continuous-Time Markov Chains
    Le, Hung, V
    Tsatsomeros, M. J.
    SPECIAL MATRICES, 2021, 10 (01): : 219 - 233
  • [34] Algorithmic Randomness in Continuous-Time Markov Chains
    Huang, Xiang
    Lutz, Jack H.
    Migunov, Andrei N.
    2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 615 - 622
  • [35] Path integrals for continuous-time Markov chains
    Pollett, PK
    Stefanov, VT
    JOURNAL OF APPLIED PROBABILITY, 2002, 39 (04) : 901 - 904
  • [36] Ergodic degrees for continuous-time Markov chains
    MAO YonghuaDepartment of Mathematics Beijing Normal University Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004 (02) : 161 - 174
  • [37] Convergence of Continuous-Time Imprecise Markov Chains
    De Bock, Jasper
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS (ISIPTA '15), 2015, : 337 - 337
  • [38] Maxentropic continuous-time homogeneous Markov chains☆
    Bolzern, Paolo
    Colaneri, Patrizio
    De Nicolao, Giuseppe
    AUTOMATICA, 2025, 175
  • [39] Ergodic degrees for continuous-time Markov chains
    Yonghua Mao
    Science in China Series A: Mathematics, 2004, 47 : 161 - 174
  • [40] Subgeometric ergodicity for continuous-time Markov chains
    Liu, Yuanyuan
    Zhang, Hanjun
    Zhao, Yiqiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) : 178 - 189