Laser-assisted microdissection and real-time PCR detect anti-inflammatory effect of perfluorocarbon

被引:19
|
作者
von der Hardt, K
Kandler, MA
Fink, L
Schoof, E
Dötsch, J
Bohle, RM
Rascher, W
机构
[1] Univ Erlangen Nurnberg, Klin Kinder & Jugendliche, D-91054 Erlangen, Germany
[2] Univ Giessen, Inst Pathol, D-35392 Giessen, Germany
关键词
aerosolized perfluorocarbon; interleukin-8; surfactant-depleted piglets; polymerase chain reaction;
D O I
10.1152/ajplung.00198.2002
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The aim of this study was to identify cell types involved in the anti-inflammatory effect of ventilation with perfluorocarbon in vivo. Fifteen anesthetized, surfactant-depleted piglets received either aerosolized perfluorocarbon (Aerosol-PFC), partial liquid ventilation (rLV) at functional residual capacity (FRC) volume (FRC-PLV), or intermittent mandatory ventilation ( control). After laser-assisted microdissection of different lung cell types, mRNA expression of IL-8 and ICAM-1 was determined using TaqMan real-time PCR normalized to hypoxanthine phosphoribosyltransferase ( HPRT). IL-8 mRNA expression ( means +/- SE; control vs. Aerosol-PFC) was 356 +/- 142 copies IL-8 mRNA/copy HPRT mRNA vs. 3.5 +/- 1.8 in alveolar macrophages (P < 0.01); 208 +/- 108 vs. 2.7 +/- 0.8 in bronchiolar epithelial cells ( P < 0.05); 26 +/- 11 vs. 0.7 +/- 0.2 in alveolar septum cells ( P < 0.01); 2.8 +/- 1.0 vs. 0.8 +/- 0.4 in bronchiolar smooth muscle cells ( P < 0.05); and 1.1 +/- 0.4 vs. 0.2 +/- 0.05 in vascular smooth muscle cells ( P < 0.05). With FRC-PLV, IL-8/HPRT mRNA expression was significantly lower in macrophages, bronchiolar epithelial, and vascular smooth muscle cells. ICAM-1 mRNA expression in vascular endothelial cells remained unchanged. Predominantly, alveolar macrophages and bronchiolar epithelial cells were involved in the inflammatory pulmonary process. The anti-inflammatory effect of Aerosol-PFC was most pronounced.
引用
收藏
页码:L55 / L62
页数:8
相关论文
共 50 条
  • [41] LASER-ASSISTED MACHINING - PROCESS-CONTROL BASED ON REAL-TIME SURFACE-TEMPERATURE MEASUREMENTS
    IGNATIEV, M
    OKOROKOV, L
    SMUROV, I
    MARTINO, V
    BERTOLON, G
    FLAMANT, G
    JOURNAL DE PHYSIQUE IV, 1994, 4 (C4): : 65 - 68
  • [42] Development of a real-time PCR to detect Streptococcus equi subspecies equi
    North, S. E.
    Wakeley, P. R.
    Mayo, N.
    Mayers, J.
    Sawyer, J.
    EQUINE VETERINARY JOURNAL, 2014, 46 (01) : 56 - 59
  • [43] SYBR Green Real-Time PCR Used to Detect Celery in Food
    Wu, Yajun
    Chen, Ying
    Wang, Bin
    Gao, Yunhua
    Bai, Liqun
    Wang, Haiyan
    JOURNAL OF AOAC INTERNATIONAL, 2010, 93 (05) : 1530 - 1536
  • [44] A novel real-time PCR to detect Cetacean morbillivirus in Atlantic cetaceans
    Groch, Katia R.
    Taniwaki, Sueli Akemi
    Favero, Cintia Maria
    Brandao, Paulo Eduardo
    Diaz-Delgado, Josue
    Fernandez, Antonio
    Catao-Dias, Jose Luiz
    Sierra, Eva
    JOURNAL OF VIROLOGICAL METHODS, 2020, 285
  • [45] Use of real-time quantitative PCR to detect Chlamydophila felis infection
    Helps, C
    Reeves, N
    Tasker, S
    Harbour, D
    JOURNAL OF CLINICAL MICROBIOLOGY, 2001, 39 (07) : 2675 - 2676
  • [46] Usefulness of Real-time PCR to Detect Mycobacterium tuberculosis and Nontuberculous Mycobacteria
    Yun, Eun Young
    Cho, Su Hee
    Il Go, Se
    Baek, Jong Ha
    Kim, You Eun
    Ma, Jeong Eun
    Lee, Gi Dong
    Cho, Yu Ji
    Jeong, Yi Yeong
    Kim, Ho Cheol
    Lee, Jong Deok
    Kim, Sun-Joo
    Hwang, Young Sil
    TUBERCULOSIS AND RESPIRATORY DISEASES, 2010, 69 (04) : 250 - 255
  • [47] Development of a Real-time PCR to Detect Genotypes A and B in Flavobacterium psychrophilum
    Inoue, Ryo
    Takase, Tomohiro
    FISH PATHOLOGY, 2019, 54 (03): : 58 - 60
  • [48] EVALUATION OF STOOL REAL-TIME PCR TO DETECT HELICOBACTER PYLORI AND TO DETERMINE CLARITHROMYCIN SUSCEPTIBILITY IN COMPARISON WITH BIOPSY REAL-TIME PCR IN PATIENTS WITH DYSPEPSIA
    Becerikli, T.
    Yilmaz, O.
    Demiray-Gurbuz, E.
    Soyturk, M.
    Sanoglu, S.
    Ellidokuz, H.
    Simsek, I.
    HELICOBACTER, 2014, 19 : 121 - 121
  • [49] Identification of gonadotropin releasing hormone receptor type I in the ovine ovary by laser capture microdissection and real-time PCR.
    Danforth, Douglas R.
    Arbogast, Laura K.
    Ottobre, Ann C.
    Ottobre, Joseph S.
    Friedman, Chad I.
    BIOLOGY OF REPRODUCTION, 2006, : 175 - 175
  • [50] Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization
    Serova, Tatiana A.
    Tikhonovich, Igor A.
    Tsyganov, Viktor E.
    JOURNAL OF PLANT PHYSIOLOGY, 2017, 212 : 29 - 44