Precise high moment asymptotics for parabolic Anderson model with log-correlated Gaussian field

被引:3
|
作者
Lyu, Yangyang [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
关键词
Precise high moment asymptotics; Large deviation; Log-correlated Gaussian field; Massive free field; Bessel field; STOCHASTIC HEAT-EQUATION; MULTIPLICATIVE CHAOS;
D O I
10.1016/j.spl.2019.108662
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the continuous parabolic Anderson model (PAM) driven by a time-independent log-correlated Gaussian field (LGF). We obtain an asymptotic result of E exp {1/2 Sigma(N)(j,k=1) integral(t)(0) integral(t )(0)gamma(B-j(s) - B-k(r))drds} (N -> infinity) which is composed of the independent Brownian motions {B-j(s)} and the function gamma approximating to a logarithmic potential at 0, such as the covariances of massive free field and Bessel field. Based on the asymptotic result, we get the precise high moment asymptotics for Feynman-Kac formula of the PAM with LGF. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Parabolic problems for the Anderson model II. Second-order asymptotics and structure of high peaks★
    J. Gärtner
    S. A. Molchanov
    Probability Theory and Related Fields, 1998, 111 : 17 - 55
  • [42] Moment Bounds for a Generalized Anderson Model with Gaussian Noise Rough in Space
    Liu, Junfeng
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 167 - 200
  • [43] Moment Bounds for a Generalized Anderson Model with Gaussian Noise Rough in Space
    Junfeng Liu
    Journal of Theoretical Probability, 2023, 36 : 167 - 200
  • [44] Operator product expansion in Liouville field theory and Seiberg-type transitions in log-correlated random energy models
    Cao, Xiangyu
    Le Doussal, Pierre
    Rosso, Alberto
    Santachiara, Raoul
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [45] Longtime asymptotics of the two-dimensional parabolic Anderson model with white-noise potential
    Koenig, Wolfgang
    Perkowski, Nicolas
    van Zuijlen, Willem
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (03): : 1351 - 1384
  • [46] Learning Gaussian Mixtures with Generalised Linear Models: Precise Asymptotics in High-dimensions
    Loureiro, Bruno
    Sicuro, Gabriele
    Gerbelot, Cedric
    Pacco, Alessandro
    Krzakala, Florent
    Zdeborova, Lenka
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [47] Gaussian Random Fields as a Model for Spatially Correlated Log-Normal Fading
    Catrein, Daniel
    Mathar, Rudolf
    ATNAC: 2008 AUSTRALASIAN TELECOMMUNICATION NETWOKS AND APPLICATIONS CONFERENCE, 2008, : 153 - 157
  • [48] HOLDER CONTINUITY FOR THE PARABOLIC ANDERSON MODEL WITH SPACE-TIME HOMOGENEOUS GAUSSIAN NOISE
    Balan, Raluca M.
    Quer-Sardanyons, Lluis
    Song, Jian
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (03) : 717 - 730
  • [49] Universality of Poisson–Dirichlet Law for Log-Correlated Gaussian Fields via Level Set StatisticsUniversality of Poisson–Dirichlet LawS. Ganguly, K. Nam
    Shirshendu Ganguly
    Kyeongsik Nam
    Communications in Mathematical Physics, 2025, 406 (4)
  • [50] THERMODYNAMICS OF THE HIGHLY CORRELATED DEGENERATE ANDERSON MODEL IN A CRYSTAL-FIELD
    KAWAKAMI, N
    OKIJI, A
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1985, 54 (02) : 685 - 691