Dispersive sensing of charge states in a bilayer graphene quantum dot

被引:13
|
作者
Banszerus, L. [1 ,2 ,3 ]
Moeller, S. [1 ,2 ,3 ]
Icking, E. [1 ,2 ,3 ]
Steiner, C. [1 ,2 ]
Neumaier, D. [4 ]
Otto, M. [4 ]
Watanabe, K. [5 ]
Taniguchi, T. [6 ]
Volk, C. [1 ,2 ,3 ]
Stampfer, C. [1 ,2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, JARA FIT, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Phys 2, D-52074 Aachen, Germany
[3] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
[4] AMO GmbH, Gesell Angew Mikro & Optoelekt, D-52074 Aachen, Germany
[5] Natl Inst Mat Sci, Res Ctr Funct Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[6] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
37;
D O I
10.1063/5.0040234
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate dispersive readout of individual charge states in a gate-defined few-electron quantum dot in bilayer graphene. We employ a radio frequency reflectometry circuit, where an LC resonator with a resonance frequency close to 280MHz is directly coupled to an Ohmic contact of the quantum dot device. The detection scheme based on changes in the quantum capacitance operates over a wide gate-voltage range and allows us to probe excited states down to the single-electron regime. Crucially, the presented sensing technique avoids the use of an additional, capacitively coupled quantum device such as a quantum point contact or single electron transistor, making dispersive sensing particularly interesting for gate-defined graphene quantum dots.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Differential charge sensing and charge delocalization in a tunable double quantum dot
    DiCarlo, L
    Lynch, HJ
    Johnson, AC
    Childress, LI
    Crockett, K
    Marcus, CM
    Hanson, MP
    Gossard, AC
    PHYSICAL REVIEW LETTERS, 2004, 92 (22) : 226801 - 1
  • [22] Ground States and Excited States in a Tunable Graphene Quantum Dot
    Wang Lin-Jun
    Cao Gang
    Tu Tao
    Li Hai-Ou
    Zhou Cheng
    Hao Xiao-Jie
    Guo Guang-Can
    Guo Guo-Ping
    CHINESE PHYSICS LETTERS, 2011, 28 (06)
  • [23] Quantum Hall States and Phase Diagram of Bilayer Graphene
    Jia, Junji
    QUEST FOR THE ORIGIN OF PARTICLES IN THE UNIVERSE, 2013, : 323 - 326
  • [24] Distinguishing Spontaneous Quantum Hall States in Bilayer Graphene
    Zhang, Fan
    MacDonald, A. H.
    PHYSICAL REVIEW LETTERS, 2012, 108 (18)
  • [25] Edge states of bilayer graphene in the quantum Hall regime
    Mazo, V.
    Shimshoni, E.
    Fertig, H. A.
    PHYSICAL REVIEW B, 2011, 84 (04)
  • [26] Quasibound states of quantum dots in single and bilayer graphene
    Matulis, A.
    Peeters, F. M.
    PHYSICAL REVIEW B, 2008, 77 (11)
  • [27] Quantum phase transitions into Kondo states in bilayer graphene
    Mastrogiuseppe, Diego
    Wong, Arturo
    Ingersent, Kevin
    Ulloa, Sergio E.
    Sandler, Nancy
    PHYSICAL REVIEW B, 2014, 89 (08)
  • [28] High-frequency gate manipulation of a bilayer graphene quantum dot
    Droescher, S.
    Guettinger, J.
    Mathis, T.
    Batlogg, B.
    Ihn, T.
    Ensslin, K.
    APPLIED PHYSICS LETTERS, 2012, 101 (04)
  • [29] Magic radius of an AA-stacked bilayer graphene quantum dot
    Rakhmanov, A. L.
    V. Rozhkov, A.
    Sboychakov, A. O.
    PHYSICAL REVIEW B, 2022, 105 (23)
  • [30] Large twisting angles in bilayer graphene moire quantum dot structures
    Bucko, Jozef
    Herman, Frantisek
    PHYSICAL REVIEW B, 2021, 103 (07)