A Novel Deep Reinforcement Learning based service migration model for Mobile Edge Computing

被引:11
|
作者
Park, Sung Woon [1 ]
Boukerche, Azzedine [1 ]
Guan, Shichao [1 ]
机构
[1] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON, Canada
关键词
Mobile edge computing; service migration; deep reinforcement learning; energy consumption; migration cost; SCHEME;
D O I
10.1109/ds-rt50469.2020.9213536
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud Computing has emerged as a foundation of smart environments by encapsulating and virtualizing the underlying design and implementation details. Concerning the inherent latency and deployment issues, Mobile Edge Computing seeks to migrate services in the vicinity of mobile users. However, the current migration-based studies lack the consideration of migration cost, transaction cost, and energy consumption on the system-level with discussion on the impact of personalized user mobility. In this paper, we implement an enhanced service migration model to address user proximity issues. We formalize the migration cost, transaction cost, energy consumption related to the migration process. We model the service migration issue as a complex optimization problem and adapt Deep Reinforcement Learning to approximate the optimal policy. We compare the performance of the proposed model with the recent Q-learning method and other baselines. The results demonstrate that the proposed model can estimate the optimal policy with complicated computation requirements.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 50 条
  • [21] A Deep Reinforcement Learning Approach for Collaborative Mobile Edge Computing
    Wu, Jiaqi
    Lin, Huang
    Liu, Huaize
    Gao, Lin
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 601 - 606
  • [22] Dynamic and intelligent edge server placement based on deep reinforcement learning in mobile edge computing
    Jiang, Xiaohan
    Hou, Peng
    Zhu, Hongbin
    Li, Bo
    Wang, Zongshan
    Ding, Hongwei
    AD HOC NETWORKS, 2023, 145
  • [23] Adaptive Service Function Chain Scheduling in Mobile Edge Computing via Deep Reinforcement Learning
    Wang, Tianfeng
    Zu, Jiachen
    Hu, Guyu
    Peng, Dongyang
    IEEE ACCESS, 2020, 8 : 164922 - 164935
  • [24] Multi-user reinforcement learning based task migration in mobile edge computing
    Yuya Cui
    Degan Zhang
    Jie Zhang
    Ting Zhang
    Lixiang Cao
    Lu Chen
    Frontiers of Computer Science, 2024, 18
  • [25] Multi-user reinforcement learning based task migration in mobile edge computing
    Cui, Yuya
    Zhang, Degan
    Zhang, Jie
    Zhang, Ting
    Cao, Lixiang
    Chen, Lu
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (04)
  • [26] Service Migration in Mobile Edge Computing
    Wang, Shangguang
    Chou, Wu
    Wong, Kok-Seng
    Zhou, Ao
    Leung, Victor C.
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2018,
  • [27] ScaRL: Service Function Chain Allocation Based on Reinforcement Learning in Mobile Edge Computing
    Jin, Qizhen
    Ge, Shuxin
    Zeng, Jiaxin
    Zhou, Xiaobo
    Qiu, Tie
    2019 SEVENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2019, : 327 - 332
  • [28] Smart collaborative optimizations strategy for mobile edge computing based on deep reinforcement learning
    Fang, Juan
    Zhang, Mengyuan
    Ye, Zhiyuan
    Shi, Jiamei
    Wei, Jianhua
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 96
  • [29] Deep Reinforcement Learning based Task Scheduling Scheme in Mobile Edge Computing Network
    Zhao, Qi
    Feng, Mingjie
    Li, Li
    Li, Yi
    Liu, Hang
    Chen, Genshe
    SENSORS AND SYSTEMS FOR SPACE APPLICATIONS XIV, 2021, 11755
  • [30] Deep Reinforcement Learning-Based Task Assignment for Cooperative Mobile Edge Computing
    Hsieh, Li-Tse
    Liu, Hang
    Guo, Yang
    Gazda, Robert
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (04) : 3156 - 3171