A Novel Class-Specific Object-Based Method for Urban Change Detection Using High-Resolution Remote Sensing Imagery

被引:7
|
作者
Bai, Ting [1 ]
Sun, Kaimin [1 ]
Li, Wenzhuo [1 ]
Li, Deren [1 ,2 ]
Chen, Yepei [1 ]
Sui, Haigang [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
[2] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
SUPPORT VECTOR MACHINES; COVER CHANGE DETECTION; RANDOM FORESTS; SENSED IMAGES; CLASSIFICATION; SEGMENTATION; PARAMETER; FEATURES;
D O I
10.14358/PERS.87.4.249
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
A single-scale object-based change-detection classifier can distinguish only global changes in land cover, not the more granular and local changes in urban areas. To overcome this issue, a novel class-specific object-based change-detection method is proposed. This method includes three steps: class-specific scale selection, class-specific classifier selection, and land cover change detection. The first step combines multi-resolution segmentation and a random forest to select the optimal scale for each change type in land cover. The second step links multi-scale hierarchical sampling with a classifier such as random forest, support vector machine, gradient-boosting decision tree, or Adaboost; the algorithm automatically selects the optimal classifier for each change type in land cover. The final step employs the optimal classifier to detect binary changes and from to changes for each change type in land cover. To validate the proposed method, we applied it to two high-resolution data sets in urban areas and compared the change-detection results of our proposed method with that of principal component analysis k-means, object-based change vector analysis, and support vector machine. The experimental results show that our proposed method is more accurate than the other methods. The proposed method can address the high levels of complexity found in urban areas, although it requires historical land cover maps as auxiliary data.
引用
下载
收藏
页码:249 / 262
页数:14
相关论文
共 50 条
  • [31] An adaptively weighted multi-feature method for object-based change detection in high spatial resolution remote sensing images
    Wu, Junzheng
    Li, Biao
    Ni, Weiping
    Yan, Weidong
    REMOTE SENSING LETTERS, 2020, 11 (04) : 333 - 342
  • [32] Evaluation of Urban Road Vehicle Detection from High Resolution Remote Sensing Imagery Using Object-oriented Method
    Tan, Qulin
    Wei, Qingchao
    Yang, Songlin
    Wang, Jinfei
    2009 JOINT URBAN REMOTE SENSING EVENT, VOLS 1-3, 2009, : 284 - +
  • [33] Object-based classification of remote sensing data for change detection
    Walter, V
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2004, 58 (3-4) : 225 - 238
  • [35] An automatic shadow detection method for high-resolution remote sensing imagery based on polynomial fitting
    Xue, Li
    Yang, Shuwen
    Li, Yikun
    Ma, Jijing
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (08) : 2986 - 3007
  • [36] Object-based deep convolutional autoencoders for high-resolution remote sensing image classification
    Jiang, Weiwei
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (03)
  • [37] Multiscale Block Fusion Object Detection Method for Large-Scale High-Resolution Remote Sensing Imagery
    Wang, Yanli
    Dong, Zhipeng
    Zhu, Ying
    IEEE ACCESS, 2019, 7 : 99530 - 99539
  • [38] Automated object recognition in high-resolution optical remote sensing imagery
    Yao, Yazhou
    Chen, Tao
    Bi, Hanbo
    Cai, Xinhao
    Pei, Gensheng
    Yang, Guoye
    Yan, Zhiyuan
    Sun, Xian
    Xu, Xing
    Zhang, Hai
    NATIONAL SCIENCE REVIEW, 2023, 10 (06)
  • [39] Automated object recognition in high-resolution optical remote sensing imagery
    Yazhou Yao
    Tao Chen
    Hanbo Bi
    Xinhao Cai
    Gensheng Pei
    Guoye Yang
    Zhiyuan Yan
    Xian Sun
    Xing Xu
    Hai Zhang
    National Science Review, 2023, 10 (06) : 38 - 41
  • [40] CHANGE DETECTION FOR HIGH-RESOLUTION REMOTE SENSING IMAGERY BASED ON MULTI-SCALE SEGMENTATION AND FUSION
    Guo, Qingle
    Zhang, Junping
    Li, Tong
    Lu, Xiaochen
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1919 - 1922