A Novel Class-Specific Object-Based Method for Urban Change Detection Using High-Resolution Remote Sensing Imagery

被引:7
|
作者
Bai, Ting [1 ]
Sun, Kaimin [1 ]
Li, Wenzhuo [1 ]
Li, Deren [1 ,2 ]
Chen, Yepei [1 ]
Sui, Haigang [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
[2] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
SUPPORT VECTOR MACHINES; COVER CHANGE DETECTION; RANDOM FORESTS; SENSED IMAGES; CLASSIFICATION; SEGMENTATION; PARAMETER; FEATURES;
D O I
10.14358/PERS.87.4.249
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
A single-scale object-based change-detection classifier can distinguish only global changes in land cover, not the more granular and local changes in urban areas. To overcome this issue, a novel class-specific object-based change-detection method is proposed. This method includes three steps: class-specific scale selection, class-specific classifier selection, and land cover change detection. The first step combines multi-resolution segmentation and a random forest to select the optimal scale for each change type in land cover. The second step links multi-scale hierarchical sampling with a classifier such as random forest, support vector machine, gradient-boosting decision tree, or Adaboost; the algorithm automatically selects the optimal classifier for each change type in land cover. The final step employs the optimal classifier to detect binary changes and from to changes for each change type in land cover. To validate the proposed method, we applied it to two high-resolution data sets in urban areas and compared the change-detection results of our proposed method with that of principal component analysis k-means, object-based change vector analysis, and support vector machine. The experimental results show that our proposed method is more accurate than the other methods. The proposed method can address the high levels of complexity found in urban areas, although it requires historical land cover maps as auxiliary data.
引用
下载
收藏
页码:249 / 262
页数:14
相关论文
共 50 条
  • [1] The geographic object-based method for change detection with remote sensing imagery
    Dian, Yuanyong, 1600, Editorial Board of Medical Journal of Wuhan University (39):
  • [2] CHANGE DETECTION FOR HIGH-RESOLUTION REMOTE SENSING IMAGERY USING OBJECT-ORIENTED CHANGE VECTOR ANALYSIS METHOD
    Li, Liang
    Li, Xue
    Zhang, Yun
    Wang, Lei
    Ying, Guowei
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2873 - 2876
  • [3] An Object-Based Semantic Classification Method for High Resolution Remote Sensing Imagery Using Ontology
    Gu, Haiyan
    Li, Haitao
    Yan, Li
    Liu, Zhengjun
    Blaschke, Thomas
    Soergel, Uwe
    REMOTE SENSING, 2017, 9 (04)
  • [4] OBJECT-BASED FEATURE EXTRACTION AND SEMI-SUPERVISED CLASSIFICATION FOR URBAN CHANGE DETECTION USING HIGH-RESOLUTION REMOTE SENSING IMAGES
    Hou, Bin
    Liu, Qingjie
    Wang, Yunhong
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1674 - 1677
  • [5] Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area
    Zhang, Xueliang
    Xiao, Pengfeng
    Feng, Xuezhi
    Yuan, Min
    REMOTE SENSING OF ENVIRONMENT, 2017, 201 : 243 - 255
  • [6] Combining the Pixel-based and Object-based Methods for Building Change Detection Using High-resolution Remote Sensing Images
    Zhang Z.
    Zhang X.
    Xin Q.
    Yang X.
    Zhang, Xinchang (eeszxc@mail.sysu.edu.cn), 2018, SinoMaps Press (47): : 102 - 112
  • [7] Class-Specific Anchor Based and Context-Guided Multi-Class Object Detection in High Resolution Remote Sensing Imagery with a Convolutional Neural Network
    Mo, Nan
    Yan, Li
    Zhu, Ruixi
    Xie, Hong
    REMOTE SENSING, 2019, 11 (03)
  • [8] An object-based image analysis for building seismic vulnerability assessment using high-resolution remote sensing imagery
    Hao Wu
    Zhiping Cheng
    Wenzhong Shi
    Zelang Miao
    Chenchen Xu
    Natural Hazards, 2014, 71 : 151 - 174
  • [9] An object-based image analysis for building seismic vulnerability assessment using high-resolution remote sensing imagery
    Wu, Hao
    Cheng, Zhiping
    Shi, Wenzhong
    Miao, Zelang
    Xu, Chenchen
    NATURAL HAZARDS, 2014, 71 (01) : 151 - 174
  • [10] High-Resolution Remote Sensing Image Change Detection by Statistical-Object-Based Method
    Zhang, Chunsen
    Li, Guojun
    Cui, Weihong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (07) : 2440 - 2447