A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications

被引:9
|
作者
Chi, Heng [1 ]
Lopez-Pamies, Oscar [2 ]
Paulino, Glaucio H. [1 ]
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, 790 Atlantic Dr, Atlanta, GA 30332 USA
[2] Univ Illinois, Dept Civil & Environm Engn, 205 North Mathews Ave, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Variational principles; Finite elastostatics; Constitutive constraints; Rigid inclusions; FIBER-REINFORCED ELASTOMERS; HOMOGENIZATION; APPROXIMATION; DEFORMATION; COMPOSITES;
D O I
10.1007/s00466-015-1234-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a new variational principle in finite elastostatics applicable to arbitrary elastic solids that may contain constitutively rigid spatial domains (e. g., rigid inclusions). The basic idea consists in describing the constitutive rigid behavior of a given spatial domain as a set of kinematic constraints over the boundary of the domain. From a computational perspective, the proposed formulation is shown to reduce to a set of algebraic constraints that can be implemented efficiently in terms of both single-field and mixed finite elements of arbitrary order. For demonstration purposes, applications of the proposed rigid-body-constraint formulation are illustrated within the context of elastomers, reinforced with periodic and random distributions of rigid filler particles, undergoing finite deformations.
引用
收藏
页码:325 / 338
页数:14
相关论文
共 50 条
  • [31] The unsymmetric finite element formulation and variational incorrectness
    Prathap, G.
    Manju, S.
    Senthilkumar, V.
    STRUCTURAL ENGINEERING AND MECHANICS, 2007, 26 (01) : 31 - 42
  • [32] Finite element variational formulation for beams with discontinuities
    Juarez, G.
    Ayala, A. G.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2012, 54 : 37 - 47
  • [33] An unsteady adaptive stochastic finite elements formulation for rigid-body fluid-structure interaction
    Witteveen, Jeroen A. S.
    Bijl, Hester
    COMPUTERS & STRUCTURES, 2008, 86 (23-24) : 2123 - 2140
  • [34] The quasi-variational principles of rigid-body dynamics and their applications
    Liang, Lifu
    Guo, Qingyong
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2010, 42 (02): : 300 - 305
  • [35] A finite element formulation for coupling rigid and flexible body dynamics of rotating beams
    Hu, K
    Vlahopoulos, N
    Mourelatos, ZP
    JOURNAL OF SOUND AND VIBRATION, 2002, 253 (03) : 603 - 630
  • [36] Matlab Implementation of the Finite Element Method in Elasticity
    J. Alberty
    C. Carstensen
    S. A. Funken
    R. Klose
    Computing, 2002, 69 : 239 - 263
  • [37] Matlab implementation of the finite element method in elasticity
    Alberty, J
    Carstensen, C
    Funken, SA
    Klose, R
    COMPUTING, 2002, 69 (03) : 239 - 263
  • [38] Numerical implementation, validation, and marine applications of an energy finite element formulation
    Vlahopoulos, N
    Garza-Rios, LO
    Mollo, C
    JOURNAL OF SHIP RESEARCH, 1999, 43 (03): : 143 - 156
  • [39] ASPECTS OF THE FORMULATION AND FINITE-ELEMENT IMPLEMENTATION OF LARGE-STRAIN ISOTROPIC ELASTICITY
    MIEHE, C
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (12) : 1981 - 2004
  • [40] Variational implementation of immersed finite element methods
    Heltai, Luca
    Costanzo, Francesco
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 229 : 110 - 127