Overexpression of an Apocynum venetum flavonols synthetase gene confers salinity stress tolerance to transgenic tobacco plants

被引:36
|
作者
Wang, Meng [1 ]
Ren, Tingting [2 ]
Huang, Ruihuan [2 ,3 ]
Li, Yiqiang [2 ]
Zhang, Chengsheng [2 ]
Xu, Zongchang [2 ]
机构
[1] Qingdao Agr Univ, Coll Agron, Qingdao 266109, Peoples R China
[2] Chinese Acad Agr Sci, Marine Agr Res Ctr, Tobacco Res Inst, Qingdao 266101, Peoples R China
[3] China Tobacco Guangxi Ind Co Ltd, Nanming 530000, Peoples R China
基金
中国国家自然科学基金;
关键词
Apocynum venetum; Flavonoids; Gene expression; Germination rate; K+/Na+ ratio; Root growth; Salinity; ANTIOXIDANT ACTIVITIES; BIOSYNTHESIS; PEROXIDASE; MECHANISMS; LEAVES; IDENTIFICATION; CAROTENOIDS; FLAVANONE; SYNTHASE; CULTURES;
D O I
10.1016/j.plaphy.2021.03.034
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinity is a major limiting factor for agricultural production, threatening food security worldwide. A thorough understanding of the mechanisms underlying plant responses is required to effectively counter its deleterious effects on crop productivity. Total flavonoid accumulation reportedly improves salinity tolerance in many crops. Therefore, we isolated the full-length cDNA of a flavonol synthetase (FLS) gene from Apocynum venetum (AvFLS). The gene contained a 1008-bp open reading frame encoding a protein composed of 335 amino acid residues. Multiple sequence alignment showed that the AvFLS protein was highly homologous to FLSs from other plants. AvFLS was expressed in leaves, stems, roots, flowers, and germinated seeds. Expression pattern analysis revealed that AvFLS was significantly induced by salinity stress. AvFLS overexpression in tobacco positively affected the development and growth of transgenic plants under salinity stress: root and seedling growth were inhibited to a lesser extent, while seed germination rate increased. Additionally, the overexpression of AvFLS under salinity stress resulted in an increase in total flavonoid content (1.63 mg g(-1) in wild-type samples and 4.63 mg g(-1) on average in transgenic samples), which accompanied the increase in the activity of antioxidant enzymes and inhibited the production of reactive oxygen species. Further, AvFLS-overexpressing transgenic tobacco plants absorbed more K+ than wild type plants, leading to an increased K+/Na+ ratio, which in turn contributed to the maintenance of Na+/K+ homeostasis. These findings suggest that an AvFLS-induced increase in total flavonoid content enhanced plant salinity tolerance, implying the importance of AvFLS gene responses to salinity stress.
引用
收藏
页码:667 / 676
页数:10
相关论文
共 50 条
  • [31] A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants
    Wu, Min
    Liu, Huanlong
    Han, Guomin
    Cai, Ronghao
    Pan, Feng
    Xiang, Yan
    SCIENTIFIC REPORTS, 2017, 7
  • [32] Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants
    Jain, Mukesh
    Tyagi, Akhilesh K.
    Khurana, Jitendra P.
    FEBS JOURNAL, 2006, 273 (23) : 5245 - 5260
  • [33] The Wheat Aquaporin Gene TaAQP7 Confers Tolerance to Cold Stress in Transgenic Tobacco
    Huang, Chao
    Zhou, Shiyi
    Hu, Wei
    Deng, Xiaomin
    Wei, Shuya
    Yang, Guangxiao
    He, Guangyuan
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION C-A JOURNAL OF BIOSCIENCES, 2014, 69 (3-4): : 142 - 148
  • [34] Heterologous overexpression of Apocynum venetum flavonoids synthetase genes improves Arabidopsis thaliana salt tolerance by activating the IAA and JA biosynthesis pathways
    Zhang, Mengchao
    Lu, Xueli
    Ren, Tingting
    Marowa, Prince
    Meng, Chen
    Wang, Juying
    Yang, Hui
    Li, Chunhua
    Zhang, Li
    Xu, Zongchang
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [35] Overexpression of Cotton RAV1 Gene in Arabidopsis Confers Transgenic Plants High Salinity and Drought Sensitivity
    Li, Xiao-Jie
    Li, Mo
    Zhou, Ying
    Hu, Shan
    Hu, Rong
    Chen, Yun
    Li, Xue-Bao
    PLOS ONE, 2015, 10 (02):
  • [36] A Versatile Peroxidase from the Fungus Bjerkandera adusta Confers Abiotic Stress Tolerance in Transgenic Tobacco Plants
    Sofia Hernandez-Bueno, Nancy
    Suarez-Rodriguez, Ramon
    Balcazar-Lopez, Edgar
    Luis Folch-Mallol, Jorge
    Augusto Ramirez-Trujillo, Jose
    Iturriaga, Gabriel
    PLANTS-BASEL, 2021, 10 (05):
  • [37] Thaumatin gene confers resistance to fungal pathogens as well as tolerance to abiotic stresses in transgenic tobacco plants
    Rajam, M. V.
    Chandola, N.
    Goud, P. Saiprasad
    Singh, D.
    Kashyap, V.
    Choudhary, M. L.
    Sihachakr, D.
    BIOLOGIA PLANTARUM, 2007, 51 (01) : 135 - 141
  • [38] Overexpression of a cysteine proteinase inhibitor gene from Jatropha curcas confers enhanced tolerance to salinity stress
    Li, Rui
    Wang, Wanjun
    Wang, Wenguo
    Li, Fosheng
    Wang, Qingwei
    Xu, Ying
    Wang, Shenghua
    ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2015, 18 (05): : 368 - 375
  • [39] Over-expression of Sub1A, a submergence tolerance gene from rice, confers enhanced hypoxic stress tolerance in transgenic tobacco plants
    Zhou, Shufeng
    Lu, Shanhua
    Fu, Fenglin
    Lan, Hai
    Zhang, Zhiming
    Zhang, Suzhi
    Tang, Qilin
    Wu, Yuanqi
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (78): : 17934 - 17939
  • [40] Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants
    Hmida-Sayari, A
    Gargouri-Bouzid, R
    Bidani, A
    Jaoua, L
    Savouré, A
    Jaoua, S
    PLANT SCIENCE, 2005, 169 (04) : 746 - 752