Dual-Manipulation on P2-Na0.67Ni0.33Mn0.67O2 Layered Cathode toward Sodium-Ion Full Cell with Record Operating Voltage Beyond 3.5 V

被引:121
|
作者
Peng, Bo [1 ]
Sun, Zhihao [2 ]
Zhao, Liping [1 ]
Li, Jie [1 ]
Zhang, Genqiang [1 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion full cell; Layered oxide cathode; High operating voltage; High energy density; One-dimension;
D O I
10.1016/j.ensm.2020.11.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
P2-type Na0.67Ni0.33Mn0.67O2, a typical layered transition metal oxide, has been extensively studied as future practical sodium ion batteries cathode due to the merit of high energy density. However, its inferior cyclability and poor rate capability have severely hindered its practical applications. Herein, a stable P2-Na0.67Ni0.33Mn0.67O2 layered cathode with simultaneously achieving magnesium doping and hierarchical one-dimensional nanostructure composed of nanoplate subunits assembly is reported. In-situ X-ray diffraction measurement and diffusion kinetics analysis reveal that Mg ion doping restrains the P2-O2 phase transition and reduces the activation energy of interfacial charge transfer. In addition, the hierarchical nanostructure is shown to possess robust structure, which raises the capacity retention from 74.8% to 92.2% over 150 cycles when compared with its bulk counterpart. Owing to the combined advantages, this unique material exhibits extraordinary electrochemical performance with a high capacity retention of 90.9% over 1000 cycles at 5C in half cell. More importantly, the full cell could achieve the highest average operating voltage of 3.56 V and outstanding energy density of 249.9 Wh kg(-1) compared with previously reported state-of-the-art values based on layered oxide cathodes. This work may open up a new opportunity for developing high energy SIBs with practicability.
引用
收藏
页码:620 / 629
页数:10
相关论文
共 50 条
  • [41] Effect of Sodium Phosphate Coating on Cu and Mg-Substituted P2−Na0.67Ni0.33Mn0.67O2 for Improving the Cycling Performance of Sodium-Ion Capacitors
    Lee S.Y.
    Kim Y.S.
    Park S.
    Lee Y.-S.
    Park Y.I.
    ACS Applied Materials and Interfaces, 2023, 15 (47): : 54530 - 54538
  • [42] Stable Electrochemical Properties of Magnesium-Doped Co-Free Layered P2-Type Na0.67Ni0.33Mn0.67O2Cathode Material for Sodium Ion Batteries
    Feng, Jie
    Luo, Shao-Hua
    Wang, Jiachen
    Li, Pengwei
    Yan, Shengxue
    Li, Junzhe
    Hou, Peng-Qing
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    ACS Sustainable Chemistry and Engineering, 2022, 10 (15): : 4994 - 5004
  • [43] Stable Electrochemical Properties of Magnesium-Doped Co-Free Layered P2-Type Na0.67Ni0.33Mn0.67O2 Cathode Material for Sodium Ion Batteries
    Feng, Jie
    Luo, Shao-hua
    Wang, Jiachen
    Li, Pengwei
    Yan, Shengxue
    Li, Junzhe
    Hou, Peng-qing
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (15): : 4994 - 5004
  • [44] Zn/Ti/F synergetic-doped Na0.67Ni0.33Mn0.67O2 for sodium-ion batteries with high energy density
    Fan, Yong
    Ye, Xianchang
    Yang, Xiaofen
    Guan, Lianyu
    Chen, Chunhua
    Wang, Huan
    Ding, Xiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (07) : 3608 - 3615
  • [45] Exploring the Stability Effect of the Co-Substituted P2-Na0.67[Mn0.67Ni0.33]O2 Cathode for Liquid- and Solid-State Sodium-Ion Batteries
    Li, Wei
    Yao, Zhujun
    Zhang, Shengzhao
    Wang, Xiuli
    Xia, Xinhui
    Gu, Changdong
    Tu, Jiangping
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) : 41477 - 41484
  • [46] P2-Type Na0.67Ni0.23Fe0.1Mn0.67O2 Cathode Material with Suppressed P2-O2 Phase Transition for Sodium-Ion Batteries
    Xie, Liang
    Lu, Weiqin
    Li, Lanyan
    Li, Mingzhou
    Wang, Xianyou
    Luo, Zhigao
    CHEMISTRYSELECT, 2024, 9 (32):
  • [47] Insights into the enhanced structure stability and electrochemical performance of Ti4+/F- co-doped P2-Na0.67Ni0.33Mn0.67O2 cathodes for sodium ion batteries at high voltage
    Zhou, Pengfei
    Zhang, Jing
    Che, Zhennan
    Quan, Zuhao
    Duan, Ju
    Wu, Xiaozhong
    Weng, Junying
    Zhao, Jinping
    Zhou, Jin
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 655 - 662
  • [48] The evolution of structure–property relationship of P2-type Na0.67Ni0.33Mn0.67O2 by vanadium substitution and organic electrolyte combinations for sodium-ion batteries
    Debanjana Pahari
    Arghadeep Chowdhury
    Dhrubajyoti Das
    Tanmoy Paul
    Sreeraj Puravankara
    Journal of Solid State Electrochemistry, 2023, 27 : 2067 - 2082
  • [49] K-Doping Suppresses Oxygen Redox in P2-Na0.67Ni0.11Cu0.22Mn0.67O2 Cathode Materials for Sodium-Ion Batteries
    Zhou, Bei
    Wong, Deniz
    Fu, Zhongheng
    Guo, Hao
    Schulz, Christian
    Karkera, Guruprakash
    Hahn, Horst
    Bianchini, Matteo
    Wang, Qingsong
    SMALL, 2024, 20 (43)
  • [50] The evolution of structure-property relationship of P2-type Na0.67Ni0.33Mn0.67O2 by vanadium substitution and organic electrolyte combinations for sodium-ion batteries
    Pahari, Debanjana
    Chowdhury, Arghadeep
    Das, Dhrubajyoti
    Paul, Tanmoy
    Puravankara, Sreeraj
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (08) : 2067 - 2082