Machine Learning for Automatic Encoding of French Electronic Medical Records: Is More Data Better ?

被引:1
|
作者
Gobeill, Julien [1 ,2 ]
Ruch, Patrick [1 ,2 ]
Meyer, Rodolphe [3 ]
机构
[1] Swiss Inst Bioinformat, SIB Text Min Grp, Geneva, Switzerland
[2] HES So HEG, Informat Sci, Geneva, Switzerland
[3] Univ Hospitals Geneva HUG, Informat Syst Dept, Geneva, Switzerland
来源
关键词
Medical coding; machine learning; text mining;
D O I
10.3233/SHTI200173
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The encoding of Electronic Medical Records is a complex and time-consuming task. We report on a machine learning model for proposing diagnoses and procedures codes, from a large realistic dataset of 245 000 electronic medical records at the University Hospitals of Geneva. Our study particularly focuses on the impact of training data quantity on the model's performances. We show that the performances of the models do not increase while encoded instances from previous years are exploited for learning data. Furthermore, supervised models are shown to be highly perishable: we show a potential drop in performances of around -10% per year. Consequently, great and constant care must be exercised for designing and updating the content of such knowledge bases exploited by machine learning.
引用
收藏
页码:312 / 316
页数:5
相关论文
共 50 条
  • [21] A Machine-Learning-Based Approach for Identifying Diagnostic Errors in Electronic Medical Records
    Zhao, Butian
    Zhang, Runtong
    Chen, Donghua
    Bai, Kaiyuan
    Zhao, Hongmei
    Gong, Siqian
    Zhu, Xiaomin
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (02) : 1172 - 1186
  • [22] DETECTING INCIDENTS OF INJECTION FROM ELECTRONIC MEDICAL RECORDS USING MACHINE LEARNING METHODS
    Okamoto, K.
    Goka, K.
    Hirose, M.
    Yamamoto, T.
    Hiragi, S.
    Yamamoto, G.
    Sugiyama, O.
    Nambu, M.
    Kuroda, T.
    VALUE IN HEALTH, 2018, 21 : S372 - S372
  • [23] Machine Learning Computational Model to predict Lung Cancer Using Electronic Medical Records
    Shlomi, Dekel
    Levi, Matanel
    Kushnir, Shiri
    Yossef, Noga
    Hoogi, Assaf
    Lazebnik, Teddy
    EUROPEAN RESPIRATORY JOURNAL, 2024, 64
  • [24] Predicting Antibiotic Resistance in Hospitalized Patients by Applying Machine Learning to Electronic Medical Records
    Lewin-Epstein, Ohad
    Baruch, Shoham
    Hadany, Lilach
    Stein, Gideon Y.
    Obolski, Uri
    CLINICAL INFECTIOUS DISEASES, 2021, 72 (11) : E848 - E855
  • [25] Text Classification Model in Chinese Electronic Medical Records Using Machine Learning Methods
    Zhang, Ping
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 : 123 - 123
  • [26] Cognitive performance classification of older patients using machine learning and electronic medical records
    Richter-Laskowska, Monika
    Sobotnicka, Ewelina
    Bednorz, Adam
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [27] Machine learning computational model to predict lung cancer using electronic medical records
    Levi, Matanel
    Lazebnik, Teddy
    Kushnir, Shiri
    Yosef, Noga
    Shlomi, Dekel
    CANCER EPIDEMIOLOGY, 2024, 92
  • [28] Detecting Severe Incidents from Electronic Medical Records Using Machine Learning Methods
    Okamoto, Kazuya
    Yamamoto, Takashi
    Hiragi, Shusuke
    Ohtera, Shosuke
    Sugiyama, Osamu
    Yamamoto, Goshiro
    Hirose, Masahiro
    Kuroda, Tomohiro
    DIGITAL PERSONALIZED HEALTH AND MEDICINE, 2020, 270 : 1247 - 1248
  • [29] Better, Not Just More: Data-centric machine learning for Earth observation
    Roscher, Ribana
    Russwurm, Marc
    Gevaert, Caroline
    Kampffmeyer, Michael
    Dos Santos, Jefersson A.
    Vakalopoulou, Maria
    Haensch, Ronny
    Hansen, Stine
    Nogueira, Keiller
    Prexl, Jonathan
    Tuia, Devis
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2024, 12 (04) : 335 - 355
  • [30] AUTOMATIC CLASSIFICATION OF ELECTRONIC HEALTH RECORDS FOR A VALUE-BASED PROGRAM THROUGH MACHINE LEARNING
    Zanotto, B.
    Etges, A. P.
    Dal Bosco, A.
    Cortes, E. G.
    Ruschel, R.
    Martins, S. O.
    Souza, A. C.
    Valiense, C.
    Viegas, F.
    Canuto, S.
    Luiz, W.
    Vieira, R.
    Goncalves, M.
    Polanczyk, C. A.
    VALUE IN HEALTH, 2021, 24 : S76 - S76