ON FIR SYSTEM IDENTIFICATION FROM NOISY INPUT AND OUTPUT DATA

被引:0
|
作者
Zheng, Wei Xing [1 ]
机构
[1] Univ Western Sydney, Sch Comp & Math, Penrith, NSW 1797, Australia
关键词
Statistical signal processing; FIR system; identification; noisy data; unbiased estimators;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is concerned with identifying parameters of finite impulse response (FIR) systems from noisy input-output data. The key idea is to estimate the input noise variance by minimizing a properly defined optimization criterion. Once a good estimate of the input noise variance is available, the unbiased estimates of the FIR system parameters are readily obtained by a closed-form least-squares solution without involving any iteration process. The proposed modified least-squares algorithm is compared with other existing methods through computer simulations.
引用
收藏
页码:112 / 115
页数:4
相关论文
共 50 条
  • [41] Input recovery from noisy output data, using regularized inversion of the Laplace transform
    Dey, AK
    Martin, CF
    Ruymgaart, FH
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) : 1125 - 1130
  • [42] Auxiliary model method for transfer function estimation from noisy input and output data
    Zhang, Yong
    Zhao, Zhe
    Cui, Guimei
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (15) : 4257 - 4265
  • [43] APPROACHES TO FIR SYSTEM-IDENTIFICATION WITH NOISY DATA USING HIGHER-ORDER STATISTICS
    TUGNAIT, JK
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (07): : 1307 - 1317
  • [44] Identification of system parameters and input force from output only
    Lu, Z. R.
    Law, S. S.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (05) : 2099 - 2111
  • [45] On closed-loop system identification using polyspectral analysis given noisy input-output time-domain data
    Tugnait, JK
    Zhou, Y
    AUTOMATICA, 2000, 36 (12) : 1795 - 1808
  • [46] On identification of FIR systems having quantized output data
    Godoy, Boris I.
    Goodwin, Graham C.
    Agueero, Juan C.
    Marelli, Damian
    Wigren, Torbjorn
    AUTOMATICA, 2011, 47 (09) : 1905 - 1915
  • [47] ON THE UNIQUENESS OF PREDICTION ERROR MODELS FOR SYSTEMS WITH NOISY INPUT OUTPUT DATA
    STOICA, P
    NEHORAI, A
    AUTOMATICA, 1987, 23 (04) : 541 - 543
  • [48] MIMO-SLS identification from input-output data
    Bencherki, Fethi
    Turkay, Semiha
    Akcay, Huseyin
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION, ICCA 2024, 2024, : 62 - 65
  • [49] Fixed-order FIR approximation of linear systems from quantized input and output data
    Cerone, V.
    Piga, D.
    Regruto, D.
    SYSTEMS & CONTROL LETTERS, 2013, 62 (12) : 1136 - 1142
  • [50] Stochastic analysis of gradient adaptive identification of nonlinear systems with memory for Gaussian data and noisy input and output measurements
    Bershad, NJ
    Celka, P
    Vesin, JM
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (03) : 675 - 689