2D Poly(arylene vinylene) Covalent Organic Frameworks via Aldol Condensation of Trimethyltriazine

被引:140
|
作者
Jadhav, Thaksen [1 ]
Fang, Yuan [1 ]
Patterson, William [1 ]
Liu, Cheng-Hao [1 ]
Hamzehpoor, Ehsan [1 ]
Perepichka, Dmitrii F. [1 ]
机构
[1] McGill Univ, Dept Chem, 801 Sherbrooke St West, Montreal, PQ H3A 0B8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
2D materials; aldol reaction; covalent organic frameworks; polymers; pi-conjugation; TRIAZINE-BASED FRAMEWORKS; CONJUGATED POLYMERS; CRYSTALLINE; FLUORESCENT;
D O I
10.1002/anie.201906976
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Designing structural order in electronically active organic solids remains a great challenge in the field of materials chemistry. Now, 2D poly(arylene vinylene)s prepared as highly crystalline covalent organic frameworks (COFs) by base-catalyzed aldol condensation of trimethyltriazine with aromatic dialdehydes are reported. The synthesized polymers are highly emissive (quantum yield of up to 50 %), as commonly observed in their 1D analogues poly(phenylene vinylene)s. The inherent well-defined porosity (surface area ca. 1000 m(2) g(-1), pore diameter ca. 11 angstrom for the terephthaldehyde derived COF-1) and 2D structure of these COFs also present a new set of properties and are likely responsible for the emission color, which is sensitive to the environment. COF-1 is highly hydrophilic and reveals a dramatic macroscopic structural reorganization that has not been previously observed in framework materials.
引用
下载
收藏
页码:13753 / 13757
页数:5
相关论文
共 50 条
  • [31] Flatbands in 2D boroxine-linked covalent organic frameworks
    Wang, Rui-Ning
    Zhang, Xin-Ran
    Wang, Shu-Fang
    Fu, Guang-Sheng
    Wang, Jiang-Long
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (02) : 1258 - 1264
  • [32] Directed synthesis of isomeric 2D heteropore covalent organic frameworks
    Yanqing Ge
    Wei Zhang
    Science China(Chemistry), 2023, 66 (04) : 926 - 927
  • [33] 2D Covalent Organic Frameworks with Kagome Lattice: Synthesis and Applications
    Tu, Jing
    Song, Wen
    Chen, Bo
    Li, Yusen
    Chen, Long
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (66)
  • [34] Directed synthesis of isomeric 2D heteropore covalent organic frameworks
    Yanqing Ge
    Wei Zhang
    Science China Chemistry, 2023, (04) : 926 - 927
  • [35] Sulfonated 2D Covalent Organic Frameworks for Efficient Proton Conduction
    Yang, Zongfan
    Chen, Pei
    Hao, Wenjing
    Xie, Zhen
    Feng, Yu
    Xing, Guolong
    Chen, Long
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (11) : 3817 - 3822
  • [36] Directed synthesis of isomeric 2D heteropore covalent organic frameworks
    Ge, Yanqing
    Zhang, Wei
    SCIENCE CHINA-CHEMISTRY, 2023, 66 (04) : 926 - 927
  • [37] Understanding charge transport in wavy 2D covalent organic frameworks
    Martinez-Abadia, Marta
    Strutynski, Karol
    Stoppiello, Craig T.
    Berlanga, Belen Lerma
    Marti-Gastaldo, Carlos
    Khlobystov, Andrei N.
    Saeki, Akinori
    Melle-Franco, Manuel
    Mateo-Alonso, Aurelio
    NANOSCALE, 2021, 13 (14) : 6829 - 6833
  • [38] Reticular Growth of Graphene Nanoribbon 2D Covalent Organic Frameworks
    Veber, Gregory
    Diercks, Christian S.
    Rogers, Cameron
    Perkins, Wade S.
    Ciston, Jim
    Lee, Kyunghoon
    Llinas, Juan Pablo
    Liebman-Pelaez, Alex
    Zhu, Chenhui
    Bokor, Jeffrey
    Fischer, Felix R.
    CHEM, 2020, 6 (05): : 1125 - 1133
  • [39] Directed synthesis of isomeric 2D heteropore covalent organic frameworks
    Yanqing Ge
    Wei Zhang
    Science China Chemistry, 2023, 66 : 926 - 927
  • [40] 2D Covalent Organic Frameworks with Alternating Triangular and Hexagonal Pores
    Baldwin, Luke A.
    Crowe, Jonathan W.
    Shannon, Matthew D.
    Jaroniec, Christopher P.
    McGrier, Psaras L.
    CHEMISTRY OF MATERIALS, 2015, 27 (18) : 6169 - 6172