New constructions of resilient Boolean functions with maximal nonlinearity

被引:0
|
作者
Tarannikov, Y [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Mech & Math Dept, Moscow 119899, Russia
来源
FAST SOFTWARE ENCRYPTION | 2002年 / 2355卷
关键词
stream cipher; Boolean function; nonlinear combining function; correlation-immunity; resiliency; nonlinearity;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we develop a technique that allows to obtain new effective constructions of highly resilient Boolean functions with high nonlinearity. In particular, we prove that the upper bound 2(n-1) - 2(m+1) on nonlinearity of m-resilient n-variable Boolean functions is achieved for 0.6n - 1 less than or equal to m less than or equal to n - 2.
引用
下载
收藏
页码:66 / 77
页数:12
相关论文
共 50 条
  • [21] On the constructions of resilient Boolean functions with five-valued Walsh spectra and resilient semi-bent functions
    Su, Sihong
    Wang, Bingxin
    Li, Jingjing
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 1 - 12
  • [22] Construction of 1-resilient Boolean functions with very good nonlinearity
    Maity, Soumen
    Arackaparambil, Chrisil
    Meyase, Kezhasono
    SEQUENCES AND THEIR APPLICATIONS - SETA 2006, 2006, 4086 : 417 - 431
  • [23] Constructions of Highly Nonlinear Resilient Vectorial Boolean Functions via Perfect Nonlinear Functions
    Yang, Junpo
    IEEE ACCESS, 2017, 5 : 23166 - 23170
  • [24] New constructions of resilient functions with strictly almost optimal nonlinearity via non-overlap spectra functions
    Wei, Yongzhuang
    Pasalic, Enes
    Zhang, Fengrong
    Wu, Wenling
    Wang, Cheng-xiang
    INFORMATION SCIENCES, 2017, 415 : 377 - 396
  • [25] Maximal Nonlinearity in Balanced Boolean Functions with Even Number of Inputs, Revisited
    Picek, Stjepan
    Santana, Roberto
    Jakobovic, Domagoj
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 3222 - 3229
  • [26] An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic
    Kolomeets, N. A.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2013, 19 (01): : 14 - 16
  • [27] Constructions of Almost Optimal Resilient Boolean Functions on Large Even Number of Variables
    Zhang, WeiGuo
    Xiao, GuoZhen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (12) : 5822 - 5831
  • [28] Nonlinearity of Boolean functions
    Rodier, F
    ACTA ARITHMETICA, 2004, 115 (01) : 1 - 22
  • [29] Construction of resilient Boolean functions in odd variables with strictly almost optimal nonlinearity
    Yujuan Sun
    Jiafang Zhang
    Sugata Gangopadhyay
    Designs, Codes and Cryptography, 2019, 87 : 3045 - 3062
  • [30] Construction of resilient Boolean functions in odd variables with strictly almost optimal nonlinearity
    Sun, Yujuan
    Zhang, Jiafang
    Gangopadhyay, Sugata
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (12) : 3045 - 3062