Imbibition and Oil Recovery Mechanism of Fracturing Fluids in Tight Sandstone Reservoirs

被引:22
|
作者
Gao, Hui [1 ,2 ,3 ]
Wang, Yalan [1 ,2 ,3 ]
Xie, Yonggang [4 ,5 ]
Ni, Jun [6 ]
Li, Teng [1 ,2 ,3 ]
Wang, Chen [1 ,2 ,3 ]
Xue, Junjie [1 ,2 ,3 ]
机构
[1] Xian Shiyou Univ, Sch Petr Engn, Xian 710065, Peoples R China
[2] Minist Educ, Engn Res Ctr Dev & Management Low Ultralow Permea, Xian 710065, Peoples R China
[3] Xian Key Lab Tight Oil Shale Oil Dev, Xian 710065, Peoples R China
[4] PetroChina, Oil & Gas Technol Inst Changqing Oilfield Co, Xian 710018, Peoples R China
[5] Natl Engn Lab Explorat & Dev Low Permeabil Oil &, Xian 710018, Peoples R China
[6] Res Inst Shaanxi Yanchang Petr Grp Co Ltd, Xian 710075, Shannxi, Peoples R China
来源
ACS OMEGA | 2021年 / 6卷 / 03期
基金
中国国家自然科学基金;
关键词
PORE STRUCTURE CHARACTERIZATION; ORDOS BASIN; PERMEABILITY; NMR;
D O I
10.1021/acsomega.0c04945
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fracturing fluid residing in a reservoir undergoes spontaneous imbibition. Here, to explore the mechanism of fracturing fluid imbibition and oil displacement, experiments on the spontaneous imbibition of fracturing fluid under different influencing factors were conducted on a core sample from the Ordos Basin of the Chang 8 formation. Combined with nuclear magnetic resonance technology, we quantitatively evaluated the degree of oil production of different pores during the fracturing fluid displacement process. Experimental results show that fracturing fluid salinity, fracturing fluid interfacial tension, and crude oil viscosity are negatively correlated with oil recovery. The phenomenon of microscale imbibition oil displacement occurs in pores of various scales in the core. The imbibition scale was between 0.10 and 1608.23 ms. The degree of crude oil production in the pores at each scale increased with increasing imbibition time. Moreover, the crude oil viscosity, fracturing fluid salinity, and fracturing fluid interfacial tension are negatively correlated with the degree of oil production at various pore scales. Decreasing crude oil viscosity significantly improves the degree of small-pore (0.1-16.68 ms) crude oil production; the low interfacial tension possesses a higher degree of oil production in the large pores (>16.68 ms), and the increment in the degree of oil production under different salinities of the small pores (0.1-16.68 ms) is greater than that of the large pores (>16.68 ms).
引用
下载
收藏
页码:1991 / 2000
页数:10
相关论文
共 50 条
  • [1] Mechanisms of Imbibition Diffusion and Recovery Enhancing of Fracturing Fluids in Tight Reservoirs
    Zhang, Lei
    Yu, Haiyang
    Tang, Huiting
    Huang, Tao
    Zeng, Huake
    Wang, Yang
    ENERGY & FUELS, 2024, 38 (14) : 12684 - 12699
  • [2] Investigating the Influencing Factors of Imbibition of Fracturing Fluids in Tight Reservoirs
    Liu, Jian
    Qu, Xuefeng
    Wang, Jiwei
    Liu, Qiang
    Zhang, Lei
    Huang, Tao
    Yu, Haiyang
    Li, Qibin
    Sierra Fernandez, Carlos
    PROCESSES, 2024, 12 (01)
  • [3] Mechanism of Permeability and Oil Recovery during Fracturing in Tight Oil Reservoirs
    Bai, Yujie
    Cao, Guangsheng
    Wei, Guanglei
    Nan, Xiaohan
    Cheng, Qingchao
    Du, Tong
    An, Hongxin
    PROCESSES, 2020, 8 (08)
  • [4] Experimental Simulation on Imbibition of the Residual Fracturing Fluid in Tight Sandstone Reservoirs
    Ren, Xiaoxia
    Li, Aifen
    Memon, Asadullah
    Fu, Shuaishi
    Wang, Guijuan
    He, Bingqing
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (08):
  • [5] Micro-influencing mechanism of permeability on spontaneous imbibition recovery for tight sandstone reservoirs
    Gu Xiaoyu
    Pu Chunsheng
    Huang Hai
    Huang Feifei
    Li Yuejing
    Liu Yang
    Liu Hengchao
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2017, 44 (06) : 1003 - 1009
  • [6] Effect of Salinity on the Imbibition Recovery Process of Tight Sandstone Reservoirs
    Liu, Xiong
    Yan, Le
    Gao, Qian
    Liu, Yafei
    Huang, Hai
    Liu, Shun
    PROCESSES, 2022, 10 (02)
  • [7] Micro-influencing mechanism of permeability on spontaneous imbibition recovery for tight sandstone reservoirs
    Gu X.
    Pu C.
    Huang H.
    Huang F.
    Li Y.
    Liu Y.
    Liu H.
    Pu, Chunsheng (chshpu@163.com), 1600, Science Press (44): : 948 - 954
  • [8] Enhancement of the imbibition recovery by surfactants in tight oil reservoirs
    Meng, Zhan
    Yang, Sheng-Lai
    Cui, Yan
    Zhong, Zi-Yao
    Liang, Cheng-Gang
    Wang, Lu
    Qian, Kun
    Ma, Quan-Zheng
    Wang, Jun-Ru
    PETROLEUM SCIENCE, 2018, 15 (04) : 783 - 793
  • [9] Enhancement of the imbibition recovery by surfactants in tight oil reservoirs
    Zhan Meng
    Sheng-Lai Yang
    Yan Cui
    Zi-Yao Zhong
    Cheng-Gang Liang
    Lu Wang
    Kun Qian
    Quan-Zheng Ma
    Jun-Ru Wang
    Petroleum Science, 2018, 15 (04) : 783 - 793
  • [10] Experimental Mechanism for Enhancing Oil Recovery by Spontaneous Imbibition with Surfactants in a Tight Sandstone Oil Reservoir
    Wang, Fuyong
    Wang, Lu
    Jiao, Liang
    Liu, Zhichao
    Yang, Kun
    ENERGY & FUELS, 2023, 37 (12) : 8180 - 8189