A Novel Feature Fusion Approach for VHR Remote Sensing Image Classification

被引:16
|
作者
Liu, Sicong [1 ]
Zheng, Yongjie [1 ]
Du, Qian [1 ,2 ]
Samat, Alim [3 ]
Tong, Xiaohua [1 ]
Dalponte, Michele [4 ]
机构
[1] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
[3] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
[4] Fdn E Mach, Res & Innovat Ctr, Dept Sustainable Agroecosyst & Bioresources, I-38010 San Michele All Adige, Italy
基金
国家重点研发计划;
关键词
Feature extraction; Filtering; Remote sensing; Spatial resolution; Entropy; Electronic mail; Computational efficiency; Classification; feature fusion; guided filtering (GF); spectral-spatial features; very high resolution (VHR) image;
D O I
10.1109/JSTARS.2020.3041868
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article develops a robust feature fusion approach to enhance the classification performance of very high resolution (VHR) remote sensing images. Specifically, a novel two-stage multiple feature fusion (TsF) approach is proposed, which includes an intragroup and an intergroup feature fusion stages. In the first fusion stage, multiple features are grouped by clustering, where redundant information between different types of features is eliminated within each group. Then, features are pairwisely fused in an intergroup fusion model based on the guided filtering method. Finally, the fused feature set is imported into a classifier to generate the classification map. In this work, the original VHR spectral bands and their attribute profiles are taken as examples as input spectral and spatial features, respectively, in order to test the performance of the proposed TsF approach. Experimental results obtained on two QuickBird datasets covering complex urban scenarios demonstrate the effectiveness of the proposed approach in terms of generation of more discriminative fusion features and enhancing classification performance. More importantly, the fused feature dimensionality is limited at a certain level; thus, the computational cost will not be significantly increased even if multiple features are considered.
引用
收藏
页码:464 / 473
页数:10
相关论文
共 50 条
  • [1] A Shallow-to-Deep Feature Fusion Network for VHR Remote Sensing Image Classification
    Liu, Sicong
    Zheng, Yongjie
    Du, Qian
    Bruzzone, Lorenzo
    Samat, Alim
    Tong, Xiaohua
    Jin, Yanmin
    Wang, Chao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Deep Feature Fusion for VHR Remote Sensing Scene Classification
    Chaib, Souleyman
    Liu, Huan
    Gu, Yanfeng
    Yao, Hongxun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08): : 4775 - 4784
  • [3] Multi-view feature learning for VHR remote sensing image classification
    Guo, Yiyou
    Ji, Jinsheng
    Shi, Dan
    Ye, Qiankun
    Xie, Huan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (15) : 23009 - 23021
  • [4] Multi-view feature learning for VHR remote sensing image classification
    Yiyou Guo
    Jinsheng Ji
    Dan Shi
    Qiankun Ye
    Huan Xie
    Multimedia Tools and Applications, 2021, 80 : 23009 - 23021
  • [5] IMAGE QUATY ASSESSMENT FOR VHR REMOTE SENSING IMAGE CLASSIFICATION
    Li, Zhipeng
    Shen, Li
    Wu, Linmei
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 11 - 16
  • [6] Training Samples Enriching Approach for Classification Improvement of VHR Remote Sensing Image
    Lv, Zhiyong
    Li, Guangfei
    Yan, Jixing
    Benediktsson, Jon Atli
    You, Zhenzhen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] A MULTISCALE SUPERPIXEL-GUIDED FILTER APPROACH FOR VHR REMOTE SENSING IMAGE CLASSIFICATION
    Liu, Sicong
    Hu, Qing
    Samat, Alim
    Tong, Xiaohua
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1017 - 1020
  • [8] Deep Feature Fusion with Integration of Residual Connection and Attention Model for Classification of VHR Remote Sensing Images
    Wang, Jicheng
    Shen, Li
    Qiao, Wenfan
    Dai, Yanshuai
    Li, Zhilin
    REMOTE SENSING, 2019, 11 (13)
  • [9] Aggregated Deep Fisher Feature for VHR Remote Sensing Scene Classification
    Li, Boyang
    Su, Weihua
    Wu, Hang
    Li, Ruihao
    Zhang, Wenchang
    Qin, Wei
    Zhang, Shiyue
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (09) : 3508 - 3523
  • [10] A NOVEL DEEP FEATURE FUSION NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION
    Li, Yangyang
    Wang, Qi
    Liang, Xiaoxu
    Jiao, Licheng
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5484 - 5487