A Shallow-to-Deep Feature Fusion Network for VHR Remote Sensing Image Classification

被引:22
|
作者
Liu, Sicong [1 ]
Zheng, Yongjie [1 ]
Du, Qian [2 ]
Bruzzone, Lorenzo [3 ]
Samat, Alim [4 ]
Tong, Xiaohua [1 ]
Jin, Yanmin [1 ]
Wang, Chao [1 ]
机构
[1] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
[3] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
[4] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Data mining; Convolution; Spatial resolution; Biological system modeling; Training; Kernel; Extended multiattribute profiles (EMAP); shallow-to-deep feature fusion; spectral-spatial feature extraction; squeeze-excitation (SE) attention mechanism; very-highresolution (VHR) image classification; MORPHOLOGICAL ATTRIBUTE PROFILES; FEATURE-EXTRACTION; NEURAL-NETWORK; HYPERSPECTRAL IMAGES; SEGMENTATION; FRAMEWORK;
D O I
10.1109/TGRS.2022.3179288
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With more detailed spatial information being represented in very-high-resolution (VHR) remote sensing images, stringent requirements are imposed on accurate image classification. Due to the diverse land objects with intraclass variation and interclass similarity, efficient and fine classification of VHR images especially in complex scenes are challenging. Even for some popular deep learning (DL) frameworks, geometric details of land objects may be lost in deep feature levels, so it is difficult to maintain the highly detailed spatial information (e.g., edges, small objects) only relying on the last high-level layer. Moreover, many of the newly developed DL methods require massive well-labeled samples, which inevitably deteriorates the model generalization ability under the few-shot learning. Therefore, in this article, a lightweight shallow-to-deep feature fusion network ((SDFN)-N-2) is proposed for VHR image classification, where the traditional machine learning (ML) and DL schemes are integrated to learn rich and representative information to improve the classification accuracy. In particular, the shallow spectral-spatial features are first extracted and then a novel triple-stage fusion (TSF) module is designed to learn the saliency and discriminative information at different levels for classification. The TSF module includes three feature fusion stages, that is, low-level spectral-spatial feature fusion, middle-level multiscale feature fusion, and high-level multilayer feature fusion. The proposed (SDFN)-N-2 takes the advantage of the shallow-to-deep features, which can extract representative and complementary information from crossing layers. It is important to note that even with limited training samples, the (SDFN)-N-2 still can achieve satisfying classification performance. Experimental results obtained on three real VHR remote sensing datasets including two multispectral and one airborne hyperspectral images covering complex urban scenarios confirm the effectiveness of the proposed approach compared with the state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Deep Feature Fusion for VHR Remote Sensing Scene Classification
    Chaib, Souleyman
    Liu, Huan
    Gu, Yanfeng
    Yao, Hongxun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08): : 4775 - 4784
  • [2] A Novel Feature Fusion Approach for VHR Remote Sensing Image Classification
    Liu, Sicong
    Zheng, Yongjie
    Du, Qian
    Samat, Alim
    Tong, Xiaohua
    Dalponte, Michele
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 464 - 473
  • [3] Shallow-to-Deep Spatial-Spectral Feature Enhancement for Hyperspectral Image Classification
    Zhou, Lijian
    Ma, Xiaoyu
    Wang, Xiliang
    Hao, Siyuan
    Ye, Yuanxin
    Zhao, Kun
    [J]. REMOTE SENSING, 2023, 15 (01)
  • [4] A NOVEL DEEP FEATURE FUSION NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION
    Li, Yangyang
    Wang, Qi
    Liang, Xiaoxu
    Jiao, Licheng
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5484 - 5487
  • [5] Aggregated Deep Fisher Feature for VHR Remote Sensing Scene Classification
    Li, Boyang
    Su, Weihua
    Wu, Hang
    Li, Ruihao
    Zhang, Wenchang
    Qin, Wei
    Zhang, Shiyue
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (09) : 3508 - 3523
  • [6] Deep Feature Fusion with Integration of Residual Connection and Attention Model for Classification of VHR Remote Sensing Images
    Wang, Jicheng
    Shen, Li
    Qiao, Wenfan
    Dai, Yanshuai
    Li, Zhilin
    [J]. REMOTE SENSING, 2019, 11 (13)
  • [7] Deep Feature Aggregation Network for Hyperspectral Remote Sensing Image Classification
    Zhang, Chunju
    Li, Guandong
    Lei, Runmin
    Du, Shihong
    Zhang, Xueying
    Zheng, Hui
    Wu, Zhaofu
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5314 - 5325
  • [8] Remote Sensing Image Scene Classification Based on Deep Multi-branch Feature Fusion Network
    Zhang Tong
    Zheng En-rang
    Shen Jun-ge
    Gao An-tong
    [J]. ACTA PHOTONICA SINICA, 2020, 49 (05)
  • [9] Feature Fusion with Deep Supervision for Remote-Sensing Image Scene Classification
    Muhammad, Usman
    Wang, Weiqiang
    Hadid, Abdenour
    [J]. 2018 IEEE 30TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2018, : 249 - 253
  • [10] Remote Sensing Image Denoising Based on Deep and Shallow Feature Fusion and Attention Mechanism
    Han, Lintao
    Zhao, Yuchen
    Lv, Hengyi
    Zhang, Yisa
    Liu, Hailong
    Bi, Guoling
    [J]. REMOTE SENSING, 2022, 14 (05)