The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation

被引:105
|
作者
Tidu, Antonin [1 ]
Janvier, Aurelie [1 ]
Schaeffer, Laure [1 ]
Sosnowski, Piotr [1 ]
Kuhn, Lauriane [2 ]
Hammann, Philippe [2 ]
Westhof, Eric [1 ]
Eriani, Gilbert [1 ]
Martin, Franck [1 ]
机构
[1] Univ Strasbourg, Inst Biol Mol & Cellulaire, Architecture & Reactivite ARN, CNRS UPR9002, F-67084 Strasbourg, France
[2] Univ Strasbourg, CNRS FRC1589, Plateforme Prote Strasbourg Esplanade, Inst Biol Mol & Cellulaire, F-67084 Strasbourg, France
关键词
SARS-CoV-2; NSP1; SL1; 5'UTR; translation; ribosome; MESSENGER-RNA; I INTERFERON; GENE-EXPRESSION; INITIATION; PURIFICATION; EVASION; CELLS;
D O I
10.1261/rna.078121.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SARS-CoV-2 coronavirus is responsible for the Covid-19 pandemic. In the early phase of infection, the single-strand positive RNA genome is translated into nonstructural proteins (NSP). One of the first proteins produced during viral infection, NSP1, binds to the host ribosome and blocks the mRNA entry channel. This triggers translation inhibition of cellular translation. Despite the presence of NSP1 on the ribosome, viral translation proceeds, however. The molecular mechanism of the so-called viral evasion to NSP1 inhibition remains elusive. Here, we confirm that viral translation is maintained in the presence of NSP1 and we show that the evasion to NSP1-inhibition is mediated by the cis-acting RNA hairpin SL1 in the 5'UTR of SARS-CoV-2. Only the apical part of SL1 is required for viral translation. We further show that NSP1 remains bound on the ribosome during viral translation. We suggest that the interaction between NSP1 and SL1 frees the mRNA accommodation channel while maintaining NSP1 bound to the ribosome. Thus, NSP1 acts as a ribosome gatekeeper, shutting down host translation and fostering SARS-CoV-2 translation in the presence of the SL1 5'UTR hairpin. SL1 is also present and necessary for translation of subgenomic RNAs in the late phase of the infectious program. Consequently, therapeutic strategies targeting SL1 should affect viral translation at early and late stages of infection. Therefore, SL1 might be seen as a genuine "Achilles heel" of the virus.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 50 条
  • [31] Epigenetic repression of antiviral genes by SARS-CoV-2 NSP1
    Anastasakis, Dimitrios G.
    Benhalevy, Daniel
    Cuburu, Nicolas
    Altan-Bonnet, Nihal
    Hafner, Markus
    PLOS ONE, 2024, 19 (01):
  • [32] Artesunate induces substantial topological alterations in the SARS-CoV-2 Nsp1 protein structure
    Gurung, Arun Bahadur
    Ali, Mohammad Ajmal
    Lee, Joongku
    Abul Farah, Mohammad
    Al-Anazi, Khalid Mashay
    Al-Hemaid, Fahad
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (02)
  • [33] SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms
    Vazquez, Christine
    Swanson, Sydnie E.
    Negatu, Seble G.
    Dittmar, Mark
    Miller, Jesse
    Ramage, Holly R.
    Cherry, Sara
    Jurado, Kellie A.
    PLOS ONE, 2021, 16 (06):
  • [34] All Domains of SARS-CoV-2 nsp1 Determine Translational Shutoff and Cytotoxicity of the Protein
    Frolov, Ilya
    Agback, Tatiana
    Palchevska, Oksana
    Dominguez, Francisco
    Lomzov, Alexander
    Agback, Peter
    Frolova, Elena I.
    JOURNAL OF VIROLOGY, 2023, 97 (03)
  • [35] Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2
    Thoms, Matthias
    Buschauer, Robert
    Ameismeier, Michael
    Koepke, Lennart
    Denk, Timo
    Hirschenberger, Maximilian
    Kratzat, Hanna
    Hayn, Manuel
    Mackens-Kiani, Timur
    Cheng, Jingdong
    Straub, Jan H.
    Sturzel, Christina M.
    Frohlich, Thomas
    Berninghausen, Otto
    Becker, Thomas
    Kirchhoff, Frank
    Sparrer, Konstantin M. J.
    Beckmann, Roland
    SCIENCE, 2020, 369 (6508) : 1249 - +
  • [36] SARS-CoV-2 N protein potentiates host NPM1-snoRNA translation machinery to enhance viral replication
    Wang, Hui
    Shi, Danrong
    Jiang, Penglei
    Yu, Zebin
    Han, Yingli
    Zhang, Zhaoru
    Wang, Peihui
    Huang, He
    Yao, Hangping
    Qian, Pengxu
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2022, 7 (01)
  • [37] SARS-CoV-2 N protein potentiates host NPM1-snoRNA translation machinery to enhance viral replication
    Hui Wang
    Danrong Shi
    Penglei Jiang
    Zebin Yu
    Yingli Han
    Zhaoru Zhang
    Peihui Wang
    He Huang
    Hangping Yao
    Pengxu Qian
    Signal Transduction and Targeted Therapy, 7
  • [38] Viral and cellular translation during SARS-CoV-2 infection
    Eriani, Gilbert
    Martin, Franck
    FEBS OPEN BIO, 2022, 12 (09): : 1584 - 1601
  • [39] Emerging Mutations in Nsp1 of SARS-CoV-2 and Their Effect on the Structural Stability
    Mou, Kejie
    Mukhtar, Farwa
    Khan, Muhammad Tahir
    Darwish, Doaa B.
    Peng, Shaoliang
    Muhammad, Shabbir
    Al-Sehemi, Abdullah G.
    Wei, Dong-Qing
    PATHOGENS, 2021, 10 (10):
  • [40] Binding of SARS-CoV-2 Nonstructural Protein 1 to 40S Ribosome Inhibits mRNA Translation
    Nguyen, Hung
    Nguyen, Hoang Linh
    Li, Mai Suan
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (29): : 7033 - 7042