TIME-FREQUENCY ANALYSIS OF FOURIER INTEGRAL OPERATORS

被引:37
|
作者
Cordero, Elena [1 ]
Nicola, Fabio [2 ]
Rodino, Luigi [1 ]
机构
[1] Univ Turin, Dept Math, I-10123 Turin, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
Fourier integral operators; modulation spaces; short-time Fourier transform; Gabor frames; ELLIPTIC-OPERATORS; GABOR FRAMES; REPRESENTATION; MULTIPLIERS; AMALGAMS; SPECTRUM; SPACES;
D O I
10.3934/cpaa.2010.9.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Time-frequency methods are used to study a class of Fourier Integral Operators (FIOs) whose representation using Gabor frames is proved to be very efficient. Indeed, similarly to the case of shearlets and curvelets frames [10, 35], the matrix representation of a Fourier Integral Operator with respect to a Gabor frame is well-organized. This is used as a powerful tool to study the boundedness of FIOs on modulation spaces. As special cases, we recapture boundedness results on modulation spaces for pseudo-differential operators with symbols in M-infinity,M-1 [33], for some Fourier multipliers [6] and metaplectic operators [14, 31]. Moreover, this paper provides the mathematical tools to numerically solving the Cauchy problem for Schrodinger equations using Gabor frames [17]. Finally, similar arguments can be employed to study other classes of FIOs [16].
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [41] Uniform eigenvalue estimates for time-frequency localization operators
    De Mari, F
    Feichtinger, HG
    Nowak, K
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 : 720 - 732
  • [42] Time-frequency concentration and localization operators in the Dunkl setting
    Ghobber, Saifallah
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2016, 7 (03) : 431 - 449
  • [43] Time-Frequency Analysis in Rn
    Vuojamo, Vesa
    Turunen, Ville
    Orelma, Heikki
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 28 (01)
  • [44] INEQUALITIES IN TIME-FREQUENCY ANALYSIS
    Ghobber, Saifallah
    Omri, Slim
    Oueslati, Ons
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (02): : 377 - 400
  • [45] Time-Frequency Analysis and Applications
    Flandrin, Patrick
    Amin, Moeness
    McLaughlin, Stephen
    Torresani, Bruno
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (06) : 19 - +
  • [46] Time-frequency analysis of tremors
    O'Suilleabhain, PE
    Matsumoto, JY
    [J]. BRAIN, 1998, 121 : 2127 - 2134
  • [47] Evolutionary time-frequency analysis
    da Silva, ARF
    [J]. PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2000, : 1102 - 1109
  • [48] Introduction to time-frequency analysis
    Flandrin, P
    [J]. JOURNAL DE PHYSIQUE IV, 2002, 12 (PR1): : 35 - 52
  • [49] Time-frequency Analysis Of The Seismocardiogram
    Armstrong, William J.
    [J]. MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2020, 52 (07) : 152 - 152
  • [50] The beginning of time-frequency analysis
    Fulop, Sean A.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022, 152 (05): : R9 - R10