Horizons in 2+1-dimensional collapse of particles

被引:3
|
作者
Brill, Dieter [1 ]
Khetarpal, Puneet
Kaul, Vijay
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20782 USA
[2] Rensselaer Polytech Inst, Troy, NY 12180 USA
来源
PRAMANA-JOURNAL OF PHYSICS | 2007年 / 69卷 / 01期
关键词
black holes; gravitational collapse; horizon;
D O I
10.1007/s12043-007-0113-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple, geometrical construction is given for three-dimensional spacetimes with negative cosmological constant that contain two particles colliding head-on. Depending on parameters like particle masses and distance, the combined geometry will be that of a particle, or of a black hole. In the black hole case the horizon is calculated. It is found that the horizon typically starts at a point and spreads into a closed curve with corners, which propagate along spacelike caustics and disappear as the horizon passes the particles.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 50 条
  • [41] Sharp Global Regularity for the 2+1-Dimensional Equivariant Faddeev Model
    Geba, Dan-Andrei
    Nakanishi, Kenji
    Zhang, Xiang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (22) : 11549 - 11565
  • [42] Quantum lax operators and discrete 2+1-dimensional integrable models?
    Isaev, AP
    Sergeev, SM
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 64 (01) : 57 - 64
  • [43] Boundary dynamics and the statistical mechanics of the 2+1-dimensional black hole
    Bañados, M
    Brotz, T
    Ortiz, ME
    NUCLEAR PHYSICS B, 1999, 545 (1-3) : 340 - 370
  • [44] Quantum Lax Operators and Discrete 2+1-Dimensional Integrable Models
    A. P. Isaev
    S. M. Sergeev
    Letters in Mathematical Physics, 2003, 64 : 57 - 64
  • [45] An integrable discretization of a 2+1-dimensional sine-Gordon equation
    Nimmo, JJC
    Schief, WK
    STUDIES IN APPLIED MATHEMATICS, 1998, 100 (03) : 295 - 309
  • [46] Monopoles in 2+1-dimensional conformal field theories with global U(1) symmetry
    Pufu, Silviu S.
    Sachdev, Subir
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [47] LARGE DATA GLOBAL REGULARITY FOR THE 2+1-DIMENSIONAL EQUIVARIANT FADDEEV MODEL
    Geba, Dan-Andrei
    Grillakis, Manoussos G.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2019, 32 (3-4) : 169 - 210
  • [48] Discrete Spectrum of 2+1-Dimensional Nonlinear Schrodinger Equation and Dynamics of Lumps
    Villarroel, Javier
    Prada, Julia
    Estevez, Pilar G.
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [49] Darboux transformation and explicit solutions for 2+1-dimensional nonlocal Schrodinger equation
    Zhang, Yan
    Liu, Yinping
    APPLIED MATHEMATICS LETTERS, 2019, 92 : 29 - 34
  • [50] On 2+1-dimensional fibre-reinforced fluid motions: a magnetohydrodynamics nexus
    Demskoi, Dmitry K.
    Rogers, Colin
    Schief, Wolfgang K.
    ACTA MECHANICA, 2022, 233 (10) : 4047 - 4062