Fractional Sobolev-Hardy inequality in RN

被引:37
|
作者
Yang, Jianfu [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Sobolev-Hardy inequality; Minimizer; Radial symmetry; Decaying law; CONSTANTS;
D O I
10.1016/j.na.2014.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the minimizing problem Lambda(s,alpha) = inf(u(H) over dots(RN), u not equivalent to 0) integral(RN)vertical bar-Delta(s/2)u(x)vertical bar(2) dx/(integral(RN)vertical bar u(x)vertical bar(2)*(s,alpha)/vertical bar x vertical bar(alpha) dx)(2/2)*(s,alpha) (1) is achieved by a positive, radially symmetric and strictly decreasing function provided 0 < s < N/2, 0 < alpha < 2s. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 50 条
  • [21] Best Remainder Norms in Sobolev-Hardy Inequalities
    Cianchi, Andrea
    Ferone, Adele
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) : 1051 - 1096
  • [22] On a Degenerate p-Fractional Kirchhoff Equations Involving Critical Sobolev-Hardy Nonlinearities
    Song, Yueqiang
    Shi, Shaoyun
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (01)
  • [23] Extremals for fractional order Hardy–Sobolev–Maz’ya inequality
    Arka Mallick
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [24] Fractional Hardy-Sobolev-Maz'ya inequality for domains
    Dyda, Bartlomiej
    Frank, Rupert L.
    STUDIA MATHEMATICA, 2012, 208 (02) : 151 - 166
  • [25] ON A FRACTIONAL HARDY-SOBOLEV INEQUALITY WITH TWO-VARIABLES
    Guo, Zhenyu
    Zhong, Xuexiu
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (05) : 1643 - 1660
  • [26] New Properties of Holomorphic Sobolev-Hardy Spaces
    Gryc, William
    Lanzani, Loredana
    Xiong, Jue
    Zhang, Yuan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 19 (01)
  • [27] Reversed Hardy-Littlewood-Sobolev Type Inequality on Rn-m x Rn
    Li, Xiang
    Yang, Minbo
    RESULTS IN MATHEMATICS, 2024, 79 (06)
  • [28] A FRACTIONAL MAGNETIC HARDY-SOBOLEV INEQUALITY WITH TWO VARIABLES
    Liu, Min
    Chen, Deyan
    Guo, Zhenyu
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (01): : 181 - 187
  • [29] Existence of entire solutions for critical Sobolev-Hardy problems involving magnetic fractional operator
    Yang, Libo
    Zuo, Jiabin
    An, Tianqing
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (11) : 1864 - 1880
  • [30] Multiple Solutions for a Fractional Laplacian System Involving Critical Sobolev-Hardy Exponents and Homogeneous Term
    Zhang, Jinguo
    Hsu, Tsing-San
    MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (01) : 1 - 20