Genetic programming approach for estimating the deformation modulus of rock mass using sensitivity analysis by neural network

被引:63
|
作者
Beiki, Morteza [1 ]
Bashari, Ali
Majdi, Abbas [1 ]
机构
[1] Univ Tehran, Univ Coll Engn, Sch Min Engn, Tehran 1439957131, Iran
关键词
Deformation modulus of rock mass; Relative strength of effect (RSE); Sensitivity analysis about the mean; Genetic programming (GP); UNIAXIAL COMPRESSIVE STRENGTH; EMPIRICAL ESTIMATION; PREDICTION; GSI; STABILITY;
D O I
10.1016/j.ijrmms.2010.07.007
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
We use genetic programming (GP) to determine the deformation modulus of rockmasses. A database of 150 datasets, including modulus of elasticity of intact rock (Ei), uniaxial compressive strength (UCS), rock mass quality designation (RQD), the number of joint permeter (J/m), porosity, and dry density for possible input parameters, and the modulus deformation of the rockmassdeterminedbyaplate loading test for out put, was established. The values of geological strength index (GSI) system were also determined for all sites and considered as another input parameter. Sensitivity analyses are considered to find out the important parameters for predicting of the deformation modulus of rockmass. Two approachesofsensitivityanalyses, basedon`` statisticalanalysisof RSE values'' and "sensitivity analysis aboutthemean'', areperformed. Evolution of the sensitivity analyses results establish the fact that variable of UCS, GSI, and RQD play more prominent roles for predicting modulus of the rock mass, andso those are considered as the predictors to design the GPmodel. Finally, twoequationswereachievedby GP. The statistical measures of root mean square error (RMSE) and variance account for (VAF) havebeen used to compare GP models with the well- knownexistingempiricalequationsproposedforpredicting the deformation modulus. These performance criteria proved that the GP models give higher predictions overexisting empirical models. (c) 2010 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1091 / 1103
页数:13
相关论文
共 50 条
  • [1] Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming
    Alemdag, S.
    Gurocak, Z.
    Cevik, A.
    Cabalar, A. F.
    Gokceoglu, C.
    ENGINEERING GEOLOGY, 2016, 203 : 70 - 82
  • [2] Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses
    Majdi, Abbas
    Beiki, Morteza
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2010, 47 (02) : 246 - 253
  • [3] Application of numerical modeling and genetic programming to estimate rock mass modulus of deformation
    Ravandi, Ebrahim Ghotbi
    Rahmannejad, Reza
    Monfared, Amir Ehsan Feili
    Ravandi, Esmaeil Ghotbi
    INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2013, 23 (05) : 733 - 737
  • [4] Application of numerical modeling and genetic programming to estimate rock mass modulus of deformation
    Ebrahim Ghotbi Ravandi
    Reza Rahmannejad
    Amir Ehsan Feili Monfared
    Esmaeil Ghotbi Ravandi
    International Journal of Mining Science and Technology, 2013, 23 (05) : 733 - 737
  • [5] THE ESTIMATION OF ROCK MASS DEFORMATION MODULUS USING REGRESSION AND ARTIFICIAL NEURAL NETWORKS ANALYSIS
    Mohammadi, Hamid
    Rahmannejad, Reza
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2010, 35 (1A) : 205 - 217
  • [6] Estimation of rock mass deformation modulus using a Bayesian approach
    Feng, X. D.
    Jimenez, R.
    ROCK ENGINEERING AND ROCK MECHANICS: STRUCTURES IN AND ON ROCK MASSES, 2014, : 183 - 187
  • [7] Numerical inversion and sensitivity analysis of deformation modulus for deep rock mass
    Liu, Liyuan
    Luo, Yifan
    Wang, Tao
    Sun, Xianteng
    Wang, Jiong
    Meitan Xuebao/Journal of the China Coal Society, 2024, 49 : 154 - 166
  • [8] Investigating intact rock strength and rock mass environment effects on rock mass deformation modulus using sensitivity analysis of empirical equations
    Zoorabadi, M.
    ROCK MECHANICS IN CIVIL AND ENVIRONMENTAL ENGINEERING, 2010, : 189 - +
  • [9] Estimation of the rock mass deformation modulus using a rock classification system
    Khabbazi, A.
    Ghafoori, M.
    Lashkaripour, G. R.
    Cheshomi, A.
    GEOMECHANICS AND GEOENGINEERING-AN INTERNATIONAL JOURNAL, 2013, 8 (01): : 46 - 52
  • [10] Estimation of rock mass deformation modulus using the rock mass classifications and seismic measurements
    Zarei, H. R.
    Uromeihy, A.
    Khalesi, S.
    ROCK MECHANICS: MEETING SOCIETY'S CHALLENGES AND DEMANDS, VOLS 1 AND 2: VOL: FUNDAMENTALS, NEW TECHNOLOGIES & NEW IDEAS; VOL 2: CASE HISTORIES, 2007, : 297 - 302