THE ESTIMATION OF ROCK MASS DEFORMATION MODULUS USING REGRESSION AND ARTIFICIAL NEURAL NETWORKS ANALYSIS

被引:2
|
作者
Mohammadi, Hamid [1 ]
Rahmannejad, Reza [1 ]
机构
[1] Bahonar Univ Kerman, Min Engn Dept, Kerman, Iran
关键词
rock mass; RMR; deformation modulus; regression analysis; ANN; JOINTED ROCK; PREDICTION; DEFORMABILITY;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rock mass deformation modulus (EM) is an important input parameter in geomechanical problems. Field tests to determine this parameter are time consuming and expensive. In this paper, two methods have been developed to estimate EM. In the first method, using regression analysis, five empirical equations have been obtained relating EM and the rock mass rating (RMR), with the polynomial fitting having the best correlation coefficient. In the other method, using artificial neural network (ANN), a model has been obtained for estimating EM based on the radial basis function (RBF). Finally, both methods are applied to estimate EM of Karun IV dam. The obtained values are compared with the results of in-situ test. The comparisons have shown that the accuracy of the ANN method is better than of the regression analysis.
引用
收藏
页码:205 / 217
页数:13
相关论文
共 50 条
  • [1] Prediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods
    Gholamnejad, J.
    Bahaaddini, H. R.
    Rastegar, M.
    [J]. JOURNAL OF MINING AND ENVIRONMENT, 2013, 4 (01): : 35 - 43
  • [2] Prediction of Elastic Modulus of Jointed Rock Mass Using Artificial Neural Networks
    Bhushan, Vidya
    Sitharam, Maji
    [J]. GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2008, 26 (04) : 443 - 452
  • [3] Estimation of the rock mass deformation modulus using a rock classification system
    Khabbazi, A.
    Ghafoori, M.
    Lashkaripour, G. R.
    Cheshomi, A.
    [J]. GEOMECHANICS AND GEOENGINEERING-AN INTERNATIONAL JOURNAL, 2013, 8 (01): : 46 - 52
  • [4] Estimation of rock mass deformation modulus using the rock mass classifications and seismic measurements
    Zarei, H. R.
    Uromeihy, A.
    Khalesi, S.
    [J]. ROCK MECHANICS: MEETING SOCIETY'S CHALLENGES AND DEMANDS, VOLS 1 AND 2: VOL: FUNDAMENTALS, NEW TECHNOLOGIES & NEW IDEAS; VOL 2: CASE HISTORIES, 2007, : 297 - 302
  • [5] Estimation of rock mass deformation modulus using a Bayesian approach
    Feng, X. D.
    Jimenez, R.
    [J]. ROCK ENGINEERING AND ROCK MECHANICS: STRUCTURES IN AND ON ROCK MASSES, 2014, : 183 - 187
  • [6] Estimation of limestone rock mass deformation modulus using empirical equations
    Rassoul Ajalloeian
    Mojtaba Mohammadi
    [J]. Bulletin of Engineering Geology and the Environment, 2014, 73 : 541 - 550
  • [7] Estimation of limestone rock mass deformation modulus using empirical equations
    Ajalloeian, Rassoul
    Mohammadi, Mojtaba
    [J]. BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2014, 73 (02) : 541 - 550
  • [8] Artificial neural networks to predict deformation modulus of rock masses considering overburden stress
    Tokgozoglu, K.
    Aladag, C. H.
    Gokceoglu, C.
    [J]. GEOMECHANICS AND GEOENGINEERING-AN INTERNATIONAL JOURNAL, 2023, 18 (01): : 48 - 64
  • [9] COMBINATION OF ARTIFICIAL NEURAL NETWORKS AND NUMERICAL MODELING FOR PREDICTING DEFORMATION MODULUS OF ROCK MASSES
    Tavarani, Narges Saadat
    Jamali, Saeed
    Zadeh, Mehdi Motevalli
    [J]. ARCHIVES OF MINING SCIENCES, 2020, 65 (02) : 337 - 346
  • [10] Performance analysis of empirical models for predicting rock mass deformation modulus using regression and Bayesian methods
    Aladejare, Adeyemi Emman
    Idris, Musa Adebayo
    [J]. JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2020, 12 (06) : 1263 - 1271