Detect Rumor and Stance Jointly by Neural Multi-task Learning

被引:123
|
作者
Ma, Jing [1 ]
Gao, Wei [2 ]
Wong, Kam-Fai [3 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Victoria Univ Wellington, Wellington, New Zealand
[3] Chinese Univ Hong Kong, MoE Key Lab High Confidence Software Technol, Hong Kong, Peoples R China
关键词
Rumor detection; Stance classification; Multi-task learning; Weight sharing; Social media; Microblog;
D O I
10.1145/3184558.3188729
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, an unhealthy phenomenon characterized as the massive spread of fake news or unverified information (i.e., rumors) has become increasingly a daunting issue in human society. The rumors commonly originate from social media outlets, primarily microblogging platforms, being viral afterwards by the wild, willful propagation via a large number of participants. It is observed that rumorous posts often trigger versatile, mostly controversial stances among participating users. Thus, determining the stances on the posts in question can be pertinent to the successful detection of rumors, and vice versa. Existing studies, however, mainly regard rumor detection and stance classification as separate tasks. In this paper, we argue that they should be treated as a joint, collaborative effort, considering the strong connections between the veracity of claim and the stances expressed in responsive posts. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies the two highly pertinent tasks, i.e., rumor detection and stance classification. Based on deep neural networks, we train both tasks jointly using weight sharing to extract the common and task-invariant features while each task can still learn its task-specific features. Extensive experiments on real-world datasets gathered from Twitter and news portals demonstrate that our proposed framework improves both rumor detection and stance classification tasks consistently with the help of the strong inter-task connections, achieving much better performance than state-of-the-art methods.
引用
收藏
页码:585 / 593
页数:9
相关论文
共 50 条
  • [41] Learning to Branch for Multi-Task Learning
    Guo, Pengsheng
    Lee, Chen-Yu
    Ulbricht, Daniel
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [42] Learning to Branch for Multi-Task Learning
    Guo, Pengsheng
    Lee, Chen-Yu
    Ulbricht, Daniel
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [43] Boosted multi-task learning
    Olivier Chapelle
    Pannagadatta Shivaswamy
    Srinivas Vadrevu
    Kilian Weinberger
    Ya Zhang
    Belle Tseng
    Machine Learning, 2011, 85 : 149 - 173
  • [44] An overview of multi-task learning
    Zhang, Yu
    Yang, Qiang
    NATIONAL SCIENCE REVIEW, 2018, 5 (01) : 30 - 43
  • [45] On Partial Multi-Task Learning
    He, Yi
    Wu, Baijun
    Wu, Di
    Wu, Xindong
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1174 - 1181
  • [46] Federated Multi-Task Learning
    Smith, Virginia
    Chiang, Chao-Kai
    Sanjabi, Maziar
    Talwalkar, Ameet
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [47] Pareto Multi-Task Learning
    Lin, Xi
    Zhen, Hui-Ling
    Li, Zhenhua
    Zhang, Qingfu
    Kwong, Sam
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [48] Asynchronous Multi-Task Learning
    Baytas, Inci M.
    Yan, Ming
    Jain, Anil K.
    Zhou, Jiayu
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 11 - 20
  • [49] Calibrated Multi-Task Learning
    Nie, Feiping
    Hu, Zhanxuan
    Li, Xuelong
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 2012 - 2021
  • [50] An overview of multi-task learning
    Yu Zhang
    Qiang Yang
    National Science Review, 2018, 5 (01) : 30 - 43