Abstractive text summarization using deep learning with a new Turkish summarization benchmark dataset

被引:3
|
作者
Ertam, Fatih [1 ]
Aydin, Galip [2 ]
机构
[1] Firat Univ, Technol Fac, Dept Digital Forens Engn, Elazig, Turkey
[2] Firat Univ, Engn Fac, Dept Comp Engn, Elazig, Turkey
来源
关键词
abstract summarization; deep learning; information retrieval; text summarization; web scraping; FRAMEWORK; MODELS;
D O I
10.1002/cpe.6482
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Exponential increase in the amount of textual data made available on the Internet results in new challenges in terms of accessing information accurately and quickly. Text summarization can be defined as reducing the dimensions of the expressions to be summarized without spoiling the meaning. Summarization can be performed as extractive and abstractive or using both together. In this study, we focus on abstractive summarization which can produce more human-like summarization results. For the study we created a Turkish news summarization benchmark dataset from various news agency web portals by crawling the news title, short news, news content, and keywords for the last 5 years. The dataset is made publicly available for researchers. The deep learning network training was carried out by using the news headlines and short news contents from the prepared dataset and then the network was expected to create the news headline as the short news summary. To evaluate the performance of this study, Rouge-1, Rouge-2, and Rouge-L were compared using precision, sensitivity and F1 measure scores. Performance values for the study were presented for each sentence as well as by averaging the results for 50 randomly selected sentences. The F1 Measure values are 0.4317, 0.2194, and 0.4334 for Rouge-1, Rouge-2, and Rouge-L respectively. Performance results show that the approach is promising for Turkish text summarization studies and the prepared dataset will add value to the literature.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Japanese abstractive text summarization using BERT
    Iwasaki, Yuuki
    Yamashita, Akihiro
    Konno, Yoko
    Matsubayashi, Katsushi
    2019 INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2019,
  • [22] Abstractive Text Summarization Using Multimodal Information
    Rafi, Shaik
    Das, Ranjita
    2023 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2023, : 141 - 145
  • [23] An approach to Abstractive Text Summarization
    Huong Thanh Le
    Tien Manh Le
    2013 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2013, : 371 - 376
  • [24] Turkish abstractive text summarization using pretrained sequence-to-sequence models
    Baykara, Batuhan
    Gungor, Tunga
    NATURAL LANGUAGE ENGINEERING, 2023, 29 (05) : 1275 - 1304
  • [25] A Survey on Abstractive Text Summarization
    Moratanch, N.
    Chitrakala, S.
    PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON CIRCUIT, POWER AND COMPUTING TECHNOLOGIES (ICCPCT 2016), 2016,
  • [26] Abstractive text summarization for Hungarian
    Yang, Zijian Gyozo
    Agocs, Adam
    Kusper, Gabor
    Varadi, Tamas
    ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 53 : 299 - 316
  • [27] Survey on Abstractive Text Summarization
    Raphal, Nithin
    Duwarah, Hemanta
    Daniel, Philemon
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2018, : 513 - 517
  • [28] Sentence salience contrastive learning for abstractive text summarization
    Huang, Ying
    Li, Zhixin
    Chen, Zhenbin
    Zhang, Canlong
    Ma, Huifang
    NEUROCOMPUTING, 2024, 593
  • [29] Deep learning based sequence to sequence model for abstractive telugu text summarization
    G. L. Anand Babu
    Srinivasu Badugu
    Multimedia Tools and Applications, 2023, 82 : 17075 - 17096
  • [30] Deep learning based sequence to sequence model for abstractive telugu text summarization
    Babu, G. L. Anand
    Badugu, Srinivasu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (11) : 17075 - 17096