Study of sample efficiency improvements for reinforcement learning algorithms

被引:2
|
作者
Tianyue Cao [1 ]
机构
[1] Princeton Int Sch Math & Sci, Princeton, NJ 08540 USA
来源
2020 9TH IEEE INTEGRATED STEM EDUCATION CONFERENCE (ISEC 2020) | 2020年
关键词
D O I
10.1109/ISEC49744.2020.9397834
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Overview of Deep Reinforcement Learning Improvements and Applications
    Zhang, Junjie
    Zhang, Cong
    Chien, Wei-Che
    JOURNAL OF INTERNET TECHNOLOGY, 2021, 22 (02): : 239 - 255
  • [22] Rainbow: Combining Improvements in Deep Reinforcement Learning
    Hessel, Matteo
    Modayil, Joseph
    van Hasselt, Hado
    Schaul, Tom
    Ostrovski, Georg
    Dabney, Will
    Horgan, Dan
    Piot, Bilal
    Azar, Mohammad
    Silver, David
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3215 - 3222
  • [23] Convergence of reinforcement learning algorithms and acceleration of learning
    Potapov, A
    Ali, MK
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [24] Safety Filtering While Training: Improving the Performance and Sample Efficiency of Reinforcement Learning Agents
    Bejarano, Federico Pizarro
    Brunke, Lukas
    Schoellig, Angela P.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01): : 788 - 795
  • [25] Elastic step DDPG: Multi-step reinforcement learning for improved sample efficiency
    Ly, Adrian
    Dazeley, Richard
    Vamplew, Peter
    Cruz, Francisco
    Aryal, Sunil
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [26] RLingua: Improving Reinforcement Learning Sample Efficiency in Robotic Manipulations With Large Language Models
    Chen, Liangliang
    Lei, Yutian
    Jin, Shiyu
    Zhang, Ying
    Zhang, Liangjun
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (07): : 6075 - 6082
  • [27] Addressing Sample Efficiency and Model-bias in Model-based Reinforcement Learning
    Anand, Akhil S.
    Kveen, Jens Erik
    Abu-Dakka, Fares
    Grotli, Esten Ingar
    Gravdahl, Jan Tommy
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1 - 6
  • [28] Improving Sample Efficiency of Example-Guided Deep Reinforcement Learning for Bipedal Walking
    Galljamov, Rustam
    Zhao, Guoping
    Belousov, Boris
    Seyfarth, Andre
    Peters, Jan
    2022 IEEE-RAS 21ST INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2022, : 587 - 593
  • [29] Measuring Sample Efficiency and Generalization in Reinforcement Learning Benchmarks: NeurIPS 2020 Procgen Benchmark
    Mohanty, Sharada
    Poonganam, Jyotish
    Gaidon, Adrien
    Kolobov, Andrey
    Wulfe, Blake
    Chakraborty, Dipam
    Semetulskis, Grazvydas
    Schapke, Joao
    Kubilius, Jonas
    Paukonis, Jurgis
    Klimas, Linas
    Hausknecht, Matthew
    MacAlpine, Patrick
    Quang Nhat Tran
    Tumiel, Thomas
    Tang, Xiaocheng
    Chen, Xinwei
    Hesse, Christopher
    Hilton, Jacob
    Guss, William Hebgen
    Genc, Sahika
    Schulman, John
    Cobbe, Karl
    NEURIPS 2020 COMPETITION AND DEMONSTRATION TRACK, VOL 133, 2020, 133 : 361 - 395
  • [30] Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency
    Cai, Qi
    Yang, Zhuoran
    Wang, Zhaoran
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,