Performance evaluation of spatio-temporal selectivity estimation techniques

被引:3
|
作者
Hadjieleftheriou, M [1 ]
Kollios, G [1 ]
Tsotras, VJ [1 ]
机构
[1] Univ Calif Riverside, Riverside, CA 92521 USA
关键词
D O I
10.1109/SSDM.2003.1214981
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many novel spatio-temporal applications deal with moving objects. In such environments, a database typically maintains the initial position and the moving function for each object. Instead of updating the database whenever an object position changes (which is not manageable), updates are issued whenever the moving function deviates beyond a given threshold. For simplicity, we assume that objects move with linear trajectories. Maintaining the moving functions in a database introduces novel problems. For example, the database can answer queries about object positions in the future: "find all objects that will be in area A, 10 minutes from now". In this paper we present a thorough performance evaluation of techniques for estimating the selectivity of such queries. We consider various existing estimators that can be stored in main memory and are updated dynamically. Furthermore, we propose two new approaches, a technique that uses histograms and a secondary index based estimator We run a diverse set of experiments to identify the strengths and weaknesses of every approach, using a wide variety of datasets.
引用
收藏
页码:202 / 211
页数:10
相关论文
共 50 条
  • [41] Effects of estimation techniques on generalised extreme value distribution (GEVD) parameters and their spatio-temporal variations
    Iqbal Hossain
    Monzur A. Imteaz
    Anirban Khastagir
    Stochastic Environmental Research and Risk Assessment, 2021, 35 : 2303 - 2312
  • [42] Effects of estimation techniques on generalised extreme value distribution (GEVD) parameters and their spatio-temporal variations
    Hossain, Iqbal
    Imteaz, Monzur A.
    Khastagir, Anirban
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (11) : 2303 - 2312
  • [43] Spatio-temporal sensor management for environmental field estimation
    Roy, Venkat
    Simonetto, Andrea
    Leus, Geert
    SIGNAL PROCESSING, 2016, 128 : 369 - 381
  • [44] Adaptive motion estimation based on spatio-temporal correlation
    Hong, Bo
    Zhuang, Jianmin
    Yu, Songyu
    2000, Shanghai Comp Soc, China (26):
  • [45] Block motion estimation based on spatio-temporal correlation
    Kim, DW
    Choi, JH
    Choi, YS
    Jeon, CH
    Ko, NY
    1996 IEEE TENCON - DIGITAL SIGNAL PROCESSING APPLICATIONS PROCEEDINGS, VOLS 1 AND 2, 1996, : 955 - 960
  • [46] Fast Motion Estimation using spatio-temporal correlations
    Yoon, Hyo Sun
    Yoo, Jae Myeong
    Dinh, Toan Nguyen
    Son, Hwa Jeong
    Park, Mi Seen
    Lee, Guee Sang
    ADVANCES IN ARTIFICIAL REALITY AND TELE-EXISTENCE, PROCEEDINGS, 2006, 4282 : 548 - +
  • [47] Density estimation over spatio-temporal data streams
    Amiri, Aboubacar
    Dabo-Niang, Sophie
    ECONOMETRICS AND STATISTICS, 2018, 5 (01) : 148 - 170
  • [48] Vehicle Trajectory Estimation Using Spatio-Temporal MCMC
    Yann Goyat
    Thierry Chateau
    Francois Bardet
    EURASIP Journal on Advances in Signal Processing, 2010
  • [49] Evaluation of spatio-temporal rainfall variability and performance of a stochastic rainfall model in Bangladesh
    Chowdhury, A. F. M. Kamal
    Kar, Kanak Kanti
    Shahid, Shamsuddin
    Chowdhury, Rezaul
    Rashid, Md. Mamunur
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019, 39 (11) : 4256 - 4273
  • [50] Motion estimation using spatio-temporal contextual information
    Namuduri, KR
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2004, 14 (08) : 1111 - 1115