Performance evaluation of spatio-temporal selectivity estimation techniques

被引:3
|
作者
Hadjieleftheriou, M [1 ]
Kollios, G [1 ]
Tsotras, VJ [1 ]
机构
[1] Univ Calif Riverside, Riverside, CA 92521 USA
关键词
D O I
10.1109/SSDM.2003.1214981
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many novel spatio-temporal applications deal with moving objects. In such environments, a database typically maintains the initial position and the moving function for each object. Instead of updating the database whenever an object position changes (which is not manageable), updates are issued whenever the moving function deviates beyond a given threshold. For simplicity, we assume that objects move with linear trajectories. Maintaining the moving functions in a database introduces novel problems. For example, the database can answer queries about object positions in the future: "find all objects that will be in area A, 10 minutes from now". In this paper we present a thorough performance evaluation of techniques for estimating the selectivity of such queries. We consider various existing estimators that can be stored in main memory and are updated dynamically. Furthermore, we propose two new approaches, a technique that uses histograms and a secondary index based estimator We run a diverse set of experiments to identify the strengths and weaknesses of every approach, using a wide variety of datasets.
引用
收藏
页码:202 / 211
页数:10
相关论文
共 50 条
  • [1] Selectivity estimation for predictive spatio-temporal queries
    Tao, YF
    Sun, JM
    Papadias, D
    19TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2003, : 417 - 428
  • [2] Spatio-temporal join selectivity
    Sun, Jimeng
    Tao, Yufei
    Papadias, Dimitris
    Kollios, George
    INFORMATION SYSTEMS, 2006, 31 (08) : 793 - 813
  • [3] A PERFORMANCE EVALUATION OF FUSION TECHNIQUES FOR SPATIO-TEMPORAL SALIENCY DETECTION IN DYNAMIC SCENES
    Muddamsetty, Satya M.
    Sidibe, Desire
    Tremeau, Alain
    Meriaudeau, Fabrice
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3924 - 3928
  • [4] Spatio-temporal approach for noise estimation
    Zlokolica, V.
    Pizurica, A.
    Vansteenkiste, E.
    Philips, W.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 1393 - 1396
  • [5] SPATIO-TEMPORAL ESTIMATION OF WILDFIRE GROWTH
    Sharma, Balaji R.
    Kumar, Manish
    Cohen, Kelly
    ASME 2013 DYNAMIC SYSTEMS AND CONTROL CONFERENCE, VOL 2, 2013,
  • [6] Spatio-temporal sensor data processing techniques
    Kim J.-J.
    Kim, Jeong-Joon (jjkim@kpu.ac.kr), 1600, Korea Information Processing Society (13): : 1259 - 1276
  • [7] Modelling and analysis techniques for spatio-temporal requirements
    Touzani M.
    Ponsard C.
    2017, Lavoisier (22): : 43 - 75
  • [8] Spatio-temporal rule mining:: Issues and techniques
    Gidófalvi, G
    Pedersen, TB
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2005, 3589 : 275 - 284
  • [9] Spatio-temporal Search Techniques for the Semantic Web
    Kim, Jeong-Joon
    Kwun, Tae-Min
    Kim, Kyu-Ho
    Lee, Ki-Young
    Jeong, Yeon-Man
    COMPUTER APPLICATIONS FOR DATABASE, EDUCATION, AND UBIQUITOUS COMPUTING, 2012, 352 : 134 - +
  • [10] Spatio-temporal motion estimation for transparency and occlusions
    Barth, E
    Stuke, I
    Aach, T
    Mota, C
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 65 - 68