ERROR ANALYSIS FOR A MIMETIC DISCRETIZATION OF THE STEADY STOKES PROBLEM ON POLYHEDRAL MESHES

被引:38
|
作者
da Veiga, L. Beirao [2 ]
Lipnikov, K. [1 ]
Manzini, G. [3 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[3] CNR, IMATI, I-27100 Pavia, Italy
关键词
Stokes equation; mimetic finite difference method; polyhedral mesh; FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; VOLUME METHOD; CONVERGENCE ANALYSIS; APPROXIMATION; ESTIMATOR;
D O I
10.1137/090757411
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the development, convergence analysis, and numerical tests of the mimetic finite difference method for the Stokes problem on two-dimensional polygonal and three-dimensional polyhedral meshes.
引用
收藏
页码:1419 / 1443
页数:25
相关论文
共 50 条
  • [31] Regularity and a priori error analysis of a Ventcel problem in polyhedral domains
    Nicaise, Serge
    Li, Hengguang
    Mazzucato, Anna
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1625 - 1636
  • [32] A mimetic finite difference discretization for the incompressible Navier-Stokes equations
    Abba, A.
    Bonaventura, L.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1101 - 1106
  • [33] Residual-based a posteriori error estimates for a nonconforming finite element discretization of the Stokes–Darcy coupled problem: isotropic discretization
    Nicaise S.
    Ahounou B.
    Houedanou W.
    Afrika Matematika, 2016, 27 (3-4) : 701 - 729
  • [34] HIERARCHICAL A POSTERIORI ERROR ESTIMATORS FOR THE MIMETIC DISCRETIZATION OF ELLIPTIC PROBLEMS
    Antonietti, Paola F.
    da Veiga, Lourenco Beirao
    Lovadina, Carlo
    Verani, Marco
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 654 - 675
  • [35] A Posteriori Error Estimation for a Finite Volume Discretization on Anisotropic Meshes
    M. Afif
    B. Amaziane
    G. Kunert
    Z. Mghazli
    S. Nicaise
    Journal of Scientific Computing, 2010, 43 : 183 - 200
  • [36] A mimetic discretization of the Reissner–Mindlin plate bending problem
    L. Beirão da Veiga
    D. Mora
    Numerische Mathematik, 2011, 117 : 425 - 462
  • [37] A Posteriori Error Estimation for a Finite Volume Discretization on Anisotropic Meshes
    Afif, M.
    Amaziane, B.
    Kunert, G.
    Mghazli, Z.
    Nicaise, S.
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 43 (02) : 183 - 200
  • [38] Error analysis for the pseudostress formulation of unsteady Stokes problem
    Kim, Dongho
    Park, Eun-Jae
    Seo, Boyoon
    NUMERICAL ALGORITHMS, 2022, 91 (02) : 959 - 996
  • [39] Trefftz discontinuous Galerkin discretization for the Stokes problem
    Lederer, Philip L.
    Lehrenfeld, Christoph
    Stocker, Paul
    NUMERISCHE MATHEMATIK, 2024, 156 (03) : 979 - 1013
  • [40] Error analysis for the pseudostress formulation of unsteady Stokes problem
    Dongho Kim
    Eun-Jae Park
    Boyoon Seo
    Numerical Algorithms, 2022, 91 : 959 - 996