PARAMETER REDUNDANCY AND THE EXISTENCE OF MAXIMUM LIKELIHOOD ESTIMATES IN LOG-LINEAR MODELS

被引:5
|
作者
Far, Serveh Sharifi [1 ]
Papathomas, Michail [2 ]
King, Ruth [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ St Andrews, Sch Math & Stat, Dept Stat, St Andrews KY16 9LZ, Fife, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Contingency table; extended maximum likelihood estimate; identifiability; parameter redundancy; sampling zero; LOCALLY IDENTIFIABLE REPARAMETERISATIONS;
D O I
10.5705/ss.202018.0100
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Log-linear models are typically fitted to contingency table data to describe and identify the relationships between categorical variables. However, these data may include observed zero cell entries, which can have an adverse effect on the estimability of the parameters, owing to parameter redundancy. We describe a general approach to determining whether a given log-linear model is parameter-redundant for a pattern of observed zeros in the table, prior to fitting the model to the data. We derive the estimable parameters or the functions of the parameters, and explain how to reduce the unidentifiable model to an identifiable model. Parameter-redundant models have a flat ridge in their likelihood function. We explain when this ridge imposes additional parameter constraints on the model, which can lead to unique maximum likelihood estimates for parameters that otherwise would not have been estimable. In contrast to other frameworks, the proposed approach informs on those constraints, elucidating the model being fitted.
引用
收藏
页码:1125 / 1143
页数:19
相关论文
共 50 条
  • [21] COMPUTING EXTENDED MAXIMUM-LIKELIHOOD-ESTIMATES FOR LINEAR PARAMETER MODELS
    CLARKSON, DB
    JENNRICH, RI
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1991, 53 (02): : 417 - 426
  • [22] On the correspondence of deviances and maximum-likelihood and interval estimates from log-linear to logistic regression modelling
    Jing, W.
    Papathomas, M.
    ROYAL SOCIETY OPEN SCIENCE, 2020, 7 (01):
  • [23] On maximum likelihood estimation for log-linear models with non-ignorable non-response
    Clarke, PS
    Smith, PWF
    STATISTICS & PROBABILITY LETTERS, 2005, 73 (04) : 441 - 448
  • [24] MAXIMUM-LIKELIHOOD-ESTIMATION FOR THE NEGATIVE MULTINOMIAL LOG-LINEAR MODEL
    EVANS, MA
    BONETT, DG
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1989, 18 (11) : 4059 - 4065
  • [25] EXISTENCE AND UNIQUENESS OF MAXIMUM LIKELIHOOD ESTIMATES FOR CERTAIN GENERALIZED LINEAR-MODELS
    WEDDERBURN, RWM
    BIOMETRIKA, 1976, 63 (01) : 27 - 32
  • [26] Linear and log-linear models
    Christensen, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) : 1290 - 1293
  • [27] Accelerating newton optimization for log-linear, models through feature redundancy
    Mathur, Arpit
    Chakrabarti, Soumen
    ICDM 2006: SIXTH INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2006, : 404 - +
  • [28] Asymptotic Characteristics of the Non-Iterative Estimates of the Linear-by-Linear Association Parameter for Ordinal Log-Linear Models
    Zafar, Sidra
    Cheema, Salman A. A.
    Beh, Eric J. J.
    Hudson, Irene L. L.
    COMPUTATION, 2022, 10 (12)
  • [29] Cancer incidence estimates for Germany via log-linear models
    Haberland, J
    Bertz, J
    Görsch, B
    Schön, D
    GESUNDHEITSWESEN, 2001, 63 (8-9) : 556 - 560
  • [30] Maximum Likelihood Estimation for an Inhomogeneous Gamma Process with a Log-linear Rate Function
    Jokiel-Rokita, Alicja
    Skolinski, Pawel
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (04)