Autoencoder-based OFDM for Agricultural Image Transmission

被引:1
|
作者
Li, Dongbo [1 ]
Liu, Xiangyu [1 ]
Shao, Yuxuan [2 ]
Sun, Yuchen [2 ]
Cheng, Siyao [1 ]
Liu, Jie [3 ]
机构
[1] Harbin Inst Technol, Fac Comp, IoT & Ambient Intelligence Res Ctr, Harbin, Peoples R China
[2] Harbin Inst Technol, Fac Comp, Harbin, Peoples R China
[3] Harbin Inst Technol Shenzhen, Int Res Inst AI, Shenzhen, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 国家重点研发计划;
关键词
Internet of Things; big data; autoencoder; OFDM; agricultural image transmission; CHANNEL ESTIMATION;
D O I
10.1109/CBD58033.2022.00036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of the Internet of Things (IoT), smart agricultural puts forward higher demands on the transmission of agricultural big data. This paper proposes an end-to-end learning communication with autoencoderbased orthogonal frequency division multiplexing (OFDM-AE) for agricultural image transmission, which solves the problems of delay, congestion and high complexity caused by the processing method to information of independent modularization for the conventional OFDM. It is proposed to construct AE based on convolutional neural network (CNN) to realize global joint optimization of end-to-end communication system. In this paper, the network architecture of OFDM-AE is designed and trained on massive agricultural image data. We analyze the performance of the proposed OFDM-AE in different signal-to-noise ratio (SNR) cases. The experimental results show that the OFDM-AE can retain the image feature information and has a very advantageous complexity performance compared to the conventional OFDM with various modulation methods.
引用
收藏
页码:157 / 162
页数:6
相关论文
共 50 条
  • [41] An autoencoder-based snow drought index
    Sinan Rasiya Koya
    Kanak Kanti Kar
    Shivendra Srivastava
    Tsegaye Tadesse
    Mark Svoboda
    Tirthankar Roy
    Scientific Reports, 13
  • [42] Autoencoder-based Network Anomaly Detection
    Chen, Zhaomin
    Yeo, Chai Kiat
    Lee, Bu Sung
    Lau, Chiew Tong
    2018 WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS), 2018,
  • [43] Autoencoder-based unsupervised clustering and hashing
    Bolin Zhang
    Jiangbo Qian
    Applied Intelligence, 2021, 51 : 493 - 505
  • [44] An autoencoder-based snow drought index
    Koya, Sinan Rasiya
    Kar, Kanak Kanti
    Srivastava, Shivendra
    Tadesse, Tsegaye
    Svoboda, Mark
    Roy, Tirthankar
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [45] An autoencoder-based spectral clustering algorithm
    Li, Xinning
    Zhao, Xiaoxiao
    Chu, Derun
    Zhou, Zhiping
    SOFT COMPUTING, 2020, 24 (03) : 1661 - 1671
  • [46] Enhancing image classification using adaptive convolutional autoencoder-based snow avalanches algorithm
    Dhiravidachelvi, E.
    Devadas, T. Joshva
    Kumar, P. J. Sathish
    Pandi, S. Senthil
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (10) : 6867 - 6879
  • [47] Autoencoder-Based Unequal Error Protection Codes
    Ninkovic, Vukan
    Vukobratovic, Dejan
    Haeger, Christian
    Wymeersch, Henk
    Amat, Alexandre Graell i
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (11) : 3575 - 3579
  • [48] Autoencoder-Based Prediction of ICU Clinical Codes
    Yordanov, Tsvetan R.
    Abu-Hanna, Ameen
    Ravelli, Anita C. J.
    Vagliano, Iacopo
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 : 57 - 62
  • [49] Deep Margin Cosine Autoencoder-Based Medical Hyperspectral Image Classification for Tumor Diagnosis
    Wang, Meiling
    Xu, Yongchang
    Wang, Zhisheng
    Xing, Changda
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [50] Convolutional Autoencoder-based Color Image Classification using Chroma Subsampling in YCbCr Space
    Li, Zuhe
    Fan, Yangyu
    Wang, Fengqin
    2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2015, : 351 - 355