Equidistribution of phase shifts in semiclassical potential scattering

被引:5
|
作者
Gell-Redman, Jesse [1 ]
Hassell, Andrew [2 ]
Zelditch, Steve [3 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[3] Northwestern Univ, Dept Math, Evanston, IL 60201 USA
关键词
ASYMPTOTIC-BEHAVIOR; CLASSICAL MECHANICS; SPHERICAL-SYMMETRY; INVERSE PROBLEM; LIMIT; OPERATORS; ENERGIES; MATRIX; RESOLVENT; SPECTRUM;
D O I
10.1112/jlms/jdu068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Hamiltonian H := h(2) Delta + V - E where Delta is the positive Laplacian on R-d, V is an element of C-0(infinity) (R-d) is a smooth, compactly supported potential, E > 0 is an energy level, and h > 0 is a semiclassical parameter. We study the eigenvalues of the scattering matrix S-h(E), which lie on the unit circle S-1 subset of C due to the unitarity of S-h(E). Under an appropriate hypothesis on the classical dynamical flow corresponding to H, we show that in the limit h -> 0, the eigenvalues are asymptotically equidistributed on the unit circle away from the point 1 is an element of S-1.
引用
收藏
页码:159 / 179
页数:21
相关论文
共 50 条