Energy cost of entanglement extraction in complex quantum systems

被引:15
|
作者
Beny, Cedric [1 ]
Chubb, Christopher T. [2 ]
Farrelly, Terry [3 ]
Osborne, Tobias J. [3 ]
机构
[1] Hanyang Univ ERICA, Dept Appl Math, 55 Hanyangdaehak Ro, Ansan 426791, Gyeonggi Do, South Korea
[2] Univ Sydney, Sch Phys, Ctr Engn Quantum Syst, Sydney, NSW 2006, Australia
[3] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
ENTROPY;
D O I
10.1038/s41467-018-06153-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
What is the energy cost of extracting entanglement from complex quantum systems? Operationally, we may wish to actually extract entanglement. Conceptually, we may wish to physically understand the entanglement distribution as a function of energy. This is important, especially for quantum field theory vacua, which are extremely entangled. Here we build a theory to understand the energy cost of entanglement extraction. First, we consider a toy model, and then we define the entanglement temperature, relating energy cost to extracted entanglement. Next, we give a physical argument quantifying the energy cost of entanglement extraction in some quantum field vacua. There the energy cost depends on the spatial dimension: in one dimension, for example, it grows exponentially with extracted entanglement. Next, we provide approaches to bound the energy cost of extracting entanglement more generally. Finally, we look at spin chain models numerically to calculate the entanglement temperature using matrix product states.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Asymptotic entanglement in open quantum systems
    Benatti, F.
    QUANTUM DYNAMICS AND INFORMATION, 2011, : 13 - 36
  • [42] Entanglement and quantum transport in integrable systems
    Alba, Vincenzo
    PHYSICAL REVIEW B, 2018, 97 (24)
  • [43] Diffusion and entanglement in open quantum systems
    Shpielberg, Ohad
    EPL, 2020, 129 (06)
  • [44] Schmidt information and entanglement of quantum systems
    Bogdanov A.Y.
    Bogdanov Y.I.
    Valiev K.A.
    Moscow University Computational Mathematics and Cybernetics, 2007, 31 (1) : 33 - 42
  • [45] Entanglement and confinement in coupled quantum systems
    Alet, Fabien
    Hanada, Masanori
    Jevicki, Antal
    Peng, Cheng
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [46] Entanglement in orthonormal bases for quantum systems
    Drori, Jacob Chevalier
    Barnes, Crispin H. W.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
  • [47] Entanglement entropy in extended quantum systems
    Cardy, J. L.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 64 (3-4): : 321 - 326
  • [48] Delocalization and Quantum Entanglement in Physical Systems
    Dutta, Rajesh
    Bagchi, Biman
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (09): : 2037 - 2043
  • [49] ENTANGLEMENT DYNAMICS IN OPEN QUANTUM SYSTEMS
    Isar, Aurelian
    ROMANIAN JOURNAL OF PHYSICS, 2008, 53 (9-10): : 1145 - 1151
  • [50] Entanglement and confinement in coupled quantum systems
    Fabien Alet
    Masanori Hanada
    Antal Jevicki
    Cheng Peng
    Journal of High Energy Physics, 2021