Short-Term Trading for a Concentrating Solar Power Producer in Electricity Markets

被引:0
|
作者
de la Nieta, Agustin A. Sanchez [1 ]
Paterakis, Nikolaos G. [1 ]
Contreras, Javier [2 ]
Catalao, Joao P. S. [3 ,4 ,5 ]
机构
[1] Eindhoven Univ Technol TU e, Dept Elect Engn, Eindhoven, Netherlands
[2] Univ Castilla La Mancha, ETS Ingenieros Ind, Ciudad Real, Spain
[3] INESC TEC & FEUP, Porto, Portugal
[4] C MAST UBI, Covilha, Portugal
[5] INESC ID IST UL, Lisbon, Portugal
关键词
ARIMA models; concentrating solar power producer; day-ahead electricity market; renewable energy; thermal energy storage;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Concentrating solar power (CSP) plants with thermal energy storage (TES) are emerging renewable technologies with the advantage that TES decreases the uncertainty in the generation of CSP plants. This study introduces a stochastic mixed integer linear programming model, where the objective function is the maximization of the expected profit that can be obtained by selling the energy generated by the CSP plant in the day-ahead electricity market. The proposed model considers three main blocks of constraints, namely, renewable generator constraints, TES constraints, and electricity market constraints. The last category of constraints considers the penalties incurred due to positive or negative imbalances in the balancing market. A case study using data from the Spanish electricity market is introduced, described and analyzed in terms of trading of the CSP plant generation. The conclusions highlight the influence of TES capacity on the energy trading profile, the expected profits and the volatility (risk) in the trading decisions.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets
    Yamin, HY
    Shahidehpour, SM
    Li, Z
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2004, 26 (08) : 571 - 581
  • [32] Experiments and Reference Models in Training Neural Networks for Short-Term Wind Power Forecasting in Electricity Markets
    Mendez, Juan
    Lorenzo, Javier
    Hernandez, Mario
    [J]. BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 1288 - 1295
  • [33] Short-Term Congestion Forecasting in Wholesale Power Markets
    Zhou, Qun
    Tesfatsion, Leigh
    Liu, Chen-Ching
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (04) : 2185 - 2196
  • [34] Analysis of Short-term Bidding Strategies in Power Markets
    Frezzi, Pablo
    Garces, Francisco
    Haubrich, Hans-Juergen
    [J]. 2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, : 971 - +
  • [35] Blockchain Based Peer-To-Peer Energy Trading Between Wind Power Producer and Prosumers in Short-Term Market
    Du, Pengbo
    Liu, Ziming
    Huang, Bonan
    Jing, Guoxiu
    Feng, Lihong
    Yang, Chao
    [J]. FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [36] Estimating the Flexibility Benefit of Concentrating Solar Plants in Electricity Markets
    Yu, Yanghao
    Du, Ershun
    Zhang, Ning
    Liu, Siwei
    Wang, Zhidong
    [J]. 2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [37] Short-term forecast methods of electricity generation by solar power plants and its classification.
    Tyunkov, D. A.
    Gritsay, A. S.
    Potapov, V., I
    Khamitov, R. N.
    Blohin, A., V
    Kondratukova, L. K.
    [J]. MECHANICAL SCIENCE AND TECHNOLOGY UPDATE (MSTU 2019), 2019, 1260
  • [38] Online short-term solar power forecasting
    Bacher, Peder
    Madsen, Henrik
    Nielsen, Henrik Aalborg
    [J]. SOLAR ENERGY, 2009, 83 (10) : 1772 - 1783
  • [39] Trading on short-term information
    Gümbel, A
    [J]. JOURNAL OF INSTITUTIONAL AND THEORETICAL ECONOMICS-ZEITSCHRIFT FUR DIE GESAMTE STAATSWISSENSCHAFT, 2005, 161 (03): : 428 - 452
  • [40] Short-term electricity trading for system balancing: An empirical analysis of the role of intraday trading in balancing Germany's electricity system
    Koch, Christopher
    Hirth, Lion
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 113