We establish a direct connection between the representation theories of Lie algebras and Lie superalgebras ( of type A) via Fock space reformulations of their Kazhdan-Lusztig theories. As a consequence, the characters of finite-dimensional irreducible modules of the general linear Lie superalgebra are computed by the usual parabolic Kazhdan-Lusztig polynomials of type A. In addition, we establish closed formulas for canonical and dual canonical bases for the tensor product of any two fundamental representations of type A.